Impact of the sampling rate on the estimation of the parameters of fractional Brownian motion

被引:5
|
作者
Zhu, ZY
Taqqu, MS
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
fractional Gaussian noise; self-simularity; long-range dependence; maximum likelihood estimation;
D O I
10.1111/j.1467-9892.2005.00470.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional Brownian motion is a mean-zero self-similar Gaussian process with stationary increments. Its covariance depends on two parameters, the self-similar parameter H and the variance C. Suppose that one wants to estimate optimally these parameters by using n equally spaced observations. How should these observations be distributed? We show that the spacing of the observations does not affect the estimation of H (this is due to the self-similarity of the process), but the spacing does affect the estimation of the variance C. For example, if the observations are equally spaced on [0, n] (unit-spacing), the rate of convergence of the maximum likelihood estimator (MLE) of the variance C is root n. However, if the observations are equally spaced on [0, 1] (1/n-spacing), or on [0, n(2)] (n-spacing), the rate is slower, root n/ln n. We also determine the optimal choice of the spacing Delta when it is constant, independent of the sample size n. While the rate of convergence of the MLE of C is root n p in this case, irrespective of the value of Delta, the value of the optimal spacing depends on H. It is 1 (unit-spacing) if H = 1/2 but is very large if H is close to 1.
引用
收藏
页码:367 / 380
页数:14
相关论文
共 50 条
  • [1] Estimation of parameters of SDE driven by fractional Brownian motion with polynomial drift
    Kubilius, K.
    Skorniakov, V.
    Melichov, D.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (10) : 1954 - 1969
  • [2] Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion
    Kim, Yoon Tae
    Park, Hyun Suk
    STATISTICS & PROBABILITY LETTERS, 2015, 105 : 181 - 188
  • [3] Sampling and parameter estimation for a second order linear system with a fractional Brownian motion
    Duncan, T. E.
    Pasik-Duncan, B.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 3135 - 3139
  • [4] Estimation of the drift of fractional Brownian motion
    Es-Sebaiy, Khalifa
    Ouassou, Idir
    Ouknine, Youssef
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (14) : 1647 - 1653
  • [5] Fractional Brownian motion and parameter estimation
    Janak, Josef
    34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 359 - 364
  • [6] Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend
    Kukush, Alexander
    Lohvinenko, Stanislav
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2022, 25 (01) : 159 - 187
  • [7] Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend
    Alexander Kukush
    Stanislav Lohvinenko
    Yuliya Mishura
    Kostiantyn Ralchenko
    Statistical Inference for Stochastic Processes, 2022, 25 : 159 - 187
  • [8] Estimation in models driven by fractional Brownian motion
    Berzin, Corinne
    Leon, Jose R.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02): : 191 - 213
  • [9] Wavelet estimation for operator fractional Brownian motion
    Abry, Patrice
    Didier, Gustavo
    BERNOULLI, 2018, 24 (02) : 895 - 928
  • [10] MAXIMUM-LIKELIHOOD-ESTIMATION OF FRACTIONAL BROWNIAN-MOTION AND MARKOV NOISE PARAMETERS
    ASH, ME
    SKEEN, ME
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1995, 18 (02) : 379 - 382