Termination of Nondeterministic Probabilistic Programs

被引:28
作者
Fu, Hongfei [1 ]
Chatterjee, Krishnendu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] IST Austria, Klosterneuburg, Austria
来源
VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2019 | 2019年 / 11388卷
基金
中国国家自然科学基金; 奥地利科学基金会;
关键词
LINEAR RANKING;
D O I
10.1007/978-3-030-11245-5_22
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the termination problem for nondeterministic probabilistic programs. We consider the bounded termination problem that asks whether the supremum of the expected termination time over all schedulers is bounded. First, we show that ranking supermartingales (RSMs) are both sound and complete for proving bounded termination over nondeterministic probabilistic programs. For nondeterministic probabilistic programs a previous result claimed that RSMs are not complete for bounded termination, whereas our result corrects the previous flaw and establishes completeness with a rigorous proof. Second, we present the first sound approach to establish lower bounds on expected termination time through RSMs.
引用
收藏
页码:468 / 490
页数:23
相关论文
共 57 条
[1]   Lexicographic Ranking Supermartingales: An Efficient Approach to Termination of Probabilistic Programs [J].
Agrawal, Sheshansh ;
Chatterjee, Krishnendu ;
Novotny, Petr .
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2018, 2 (POPL)
[2]  
[Anonymous], 2018, FOSTER GROSSMAN
[3]  
[Anonymous], 1971, Introduction to probabilistic automata (Computer science and applied mathematics)
[4]  
Avanzini M, 2018, Arxiv, DOI arXiv:1802.09774
[5]   On Probabilistic Term Rewriting [J].
Avanzini, Martin ;
Dal Lago, Ugo ;
Yamada, Akihisa .
FUNCTIONAL AND LOGIC PROGRAMMING, FLOPS 2018, 2018, 10818 :132-148
[6]  
Baier C, 2008, PRINCIPLES OF MODEL CHECKING, P1
[7]   Proving Expected Sensitivity of Probabilistic Programs [J].
Barthe, Gilles ;
Espitau, Thomas ;
Gregoire, Benjamin ;
Hsu, Justin ;
Strub, Pierre-Yves .
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2018, 2 (POPL)
[8]   Coupling Proofs Are Probabilistic Product Programs [J].
Barthe, Gilles ;
Gregoire, Benjamin ;
Hsu, Justin ;
Strub, Pierre-Yves .
ACM SIGPLAN NOTICES, 2017, 52 (01) :161-174
[9]  
Billingsley P., 1995, WILEY SERIES PROBABI
[10]  
Bournez O, 2005, LECT NOTES COMPUT SC, V3467, P323