On a general q-Fourier transformation with nonsymmetric kernels

被引:38
作者
Askey, RA
Rahman, M
Suslov, SK
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] CARLETON UNIV,DEPT MATH & STAT,OTTAWA,ON K1S 5B6,CANADA
[3] IV KURCHATOV ATOM ENERGY INST,RUSSIAN RES CTR,MOSCOW 123182,RUSSIA
基金
美国国家科学基金会;
关键词
q-Fourier transform; integral transforms; q-orthogonal polynomials; Hermite polynomials; Poisson kernels; Fourier transform; basic hypergeometric series; Askey-Wilson polynomials; Al-Salam-Chihara polynomials;
D O I
10.1016/0377-0427(95)00259-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Wiener used the Poisson kernel for the Hermite polynomials to deal with the classical Fourier transform. Askey, Atakishiyev and Suslov used this approach to obtain a q-Fourier transform by using the continuous q-Hermite polynomials. Rahman and Suslov extended this result by taking the Askey-Wilson polynomials, considered to be the most general continuous classical orthogonal polynomials. The theory of q-Fourier transformation is further extended here by considering a nonsymmetric version of the Poisson kernel with Askey-Wilson polynomials. This approach enables us to obtain some new results, for example, the complex and real orthogonalities of these kernels.
引用
收藏
页码:25 / 55
页数:31
相关论文
共 21 条
[1]   THE Q-HARMONIC OSCILLATOR AND THE AL-SALAM AND CARLITZ POLYNOMIALS [J].
ASKEY, R ;
SUSLOV, SK .
LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (02) :123-132
[2]   THE Q-HARMONIC OSCILLATOR AND AN ANALOG OF THE CHARLIER POLYNOMIALS [J].
ASKEY, R ;
SUSLOV, SK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15) :L693-L698
[3]  
ASKEY R, 1985, MEM AM MATH SOC, V319, P1
[4]  
ASKEY R, 1993, SYMMETRIES SCI, V6, P57
[5]  
ASKEY R, 1994, RENDICONTI MATEMAT 7, V14, P135
[6]  
ASKEY R, 1983, STUDIES PURE MATH, P55
[7]   DIFFERENCE ANALOGS OF THE HARMONIC-OSCILLATOR [J].
ATAKISHIEV, NM ;
SUSLOV, SK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1990, 85 (01) :1055-1062
[8]  
ATAKISHIYEV NM, 1994, CONSTR APPR, V11, P181
[9]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[10]   POSITIVITY OF THE POISSON KERNEL FOR THE CONTINUOUS Q-JACOBI POLYNOMIALS AND SOME QUADRATIC TRANSFORMATION FORMULAS FOR BASIC HYPERGEOMETRIC-SERIES [J].
GASPER, G ;
RAHMAN, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) :970-999