Non-parametric estimation of conditional moments for sensitivity analysis

被引:55
作者
Ratto, M. [1 ]
Pagano, A. [1 ]
Young, P. C. [2 ,3 ,4 ]
机构
[1] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy
[2] Univ Lancaster, Inst Environm & Nat Sci, Lancaster LA1 4YW, England
[3] Australian Natl Univ, Sch Environm & Soc, Canberra, ACT, Australia
[4] Univ New S Wales, Sch Elect & Commun Engn, Sydney, NSW, Australia
关键词
Sensitivity analysis; Non-parametric methods; Conditional moments; State-dependent parameter models; UNCERTAINTY IMPORTANCE; RS-HDMR;
D O I
10.1016/j.ress.2008.02.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the non-parametric estimation of conditional moments, which is useful for applications in global sensitivity analysis (GSA) and in the more general emulation framework. The estimation is based on the state-dependent parameter (SDP) estimation approach and allows for the estimation of conditional moments of order larger than unity. This allows one to identify a wider spectrum of parameter sensitivities with respect to the variance-based main effects, like shifts in the variance, skewness or kurtosis of the model output, so adding Valuable information for the analyst, at a small computational cost. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 24 条
[1]  
[Anonymous], 2004, SENSITIVITY ANAL MOD
[2]  
[Anonymous], P SAMO2001
[3]  
[Anonymous], 30 RUSS AC SCI KELD
[4]  
[Anonymous], 1957, MATH METHODS STAT
[5]   A new uncertainty importance measure [J].
Borgonovo, E. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2007, 92 (06) :771-784
[6]   Measuring uncertainty importance: Investigation and comparison of alternative approaches [J].
Borgonovo, Emanuele .
RISK ANALYSIS, 2006, 26 (05) :1349-1361
[7]   Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression [J].
Doksum, K ;
Samarov, A .
ANNALS OF STATISTICS, 1995, 23 (05) :1443-1473
[8]  
Hall P., 2013, BOOTSTRAP EDGEWORTH
[9]  
Ishigami T., 1990, P ISUMA 90 1 INT S U
[10]   Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions [J].
Li, GY ;
Hu, JS ;
Wang, SW ;
Georgopoulos, PG ;
Schoendorf, J ;
Rabitz, H .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (07) :2474-2485