An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs

被引:9
|
作者
Sarkoezy, Gabor N. [1 ]
Selkow, Stanley M. [2 ]
Song, Fei [1 ]
机构
[1] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[2] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
基金
美国国家科学基金会;
关键词
vertex partitions; regulatory lemma; BLOW-UP LEMMA; CYCLES;
D O I
10.1002/jgt.21661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Improving a result of Sarkozy and Selkow, we show that for all integers r,k2 there exists a constant n0=n0(r,k) such that if nn0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochromatic k-regular subgraphs and vertices. This is close to best possible. (c) 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127145, 2013
引用
收藏
页码:127 / 145
页数:19
相关论文
共 50 条
  • [31] A Dichotomy for k-Regular Graphs with {0,1}-Vertex Assignments and Real Edge Functions
    Cai, Jin-Yi
    Kowalczyk, Michael
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2010, 6108 : 328 - +
  • [32] Infinite families of infinite families of congruences for k-regular partitions
    Carlson, Rowland
    Webb, John J.
    RAMANUJAN JOURNAL, 2014, 33 (03): : 329 - 337
  • [33] Infinitely Many Congruences for k-Regular Partitions with Designated Summands
    da Silva, Robson
    Sellers, James A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 357 - 370
  • [34] Infinitely Many Congruences for k-Regular Partitions with Designated Summands
    Robson da Silva
    James A. Sellers
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 357 - 370
  • [35] A note on the higher order Turan inequalities for k-regular partitions
    Craig, William
    Pun, Anna
    RESEARCH IN NUMBER THEORY, 2021, 7 (01)
  • [36] Infinite families of infinite families of congruences for k-regular partitions
    Rowland Carlson
    John J. Webb
    The Ramanujan Journal, 2014, 33 : 329 - 337
  • [37] k-regular factors and semi-k-regular factors in bipartite graphs
    Keiko Kotani
    Annals of Combinatorics, 1998, 2 (2) : 137 - 144
  • [38] On defining numbers of k-chromatic k-regular graphs
    Soltankhah, N
    Mahmoodian, ES
    ARS COMBINATORIA, 2005, 76 : 257 - 276
  • [39] k-Regular graphs with the circular chromatic index close to k
    Candrakova, Barbora
    Macajova, Edita
    DISCRETE MATHEMATICS, 2014, 322 : 19 - 25
  • [40] Partition functions on k-regular graphs with {0,1}-vertex assignments and real edge functions
    Cai, Jin-Yi
    Kowalczyk, Michael
    THEORETICAL COMPUTER SCIENCE, 2013, 494 : 63 - 74