An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs

被引:9
作者
Sarkoezy, Gabor N. [1 ]
Selkow, Stanley M. [2 ]
Song, Fei [1 ]
机构
[1] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[2] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
基金
美国国家科学基金会;
关键词
vertex partitions; regulatory lemma; BLOW-UP LEMMA; CYCLES;
D O I
10.1002/jgt.21661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Improving a result of Sarkozy and Selkow, we show that for all integers r,k2 there exists a constant n0=n0(r,k) such that if nn0 and the edges of the complete graph Kn are colored with r colors then the vertex set of Kn can be partitioned into at most 100rlogr+2rk vertex disjoint connected monochromatic k-regular subgraphs and vertices. This is close to best possible. (c) 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127145, 2013
引用
收藏
页码:127 / 145
页数:19
相关论文
共 20 条
[1]   Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles [J].
Allen, Peter .
COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (04) :471-486
[2]  
[Anonymous], 1993, Com binatorics: Paul Erdos is eighty
[3]   Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture [J].
Bessy, Stephane ;
Thomasse, Stephan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (02) :176-180
[4]  
Bollobas B., 2004, Extremal Graph Theory
[5]  
Erds P., 1991, J COMB THEORY B, V51, P90
[6]  
Erds P., 1959, ACTA MATH SCI HUNGAR, V10, P337
[7]  
Gyarfas A., 1989, IRREGULARITIES PARTI, V8, P89
[8]  
Gyarfas A., 2006, ALGORITHMS COMBINATO, P133
[9]   Three-color Ramsey numbers for paths [J].
Gyarfas, Andras ;
Ruszinko, Miklos ;
Sarkozy, Gabor N. ;
Szemeredi, Endre .
COMBINATORICA, 2007, 27 (01) :35-69
[10]   An improved bound for the monochromatic cycle partition number [J].
Gyarfas, Andras ;
Ruszinko, Miklos ;
Sarkozy, Gabor N. ;
Szemeredi, Endre .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) :855-873