Complexity of k-SAT

被引:98
作者
Impagliazzo, R [1 ]
Paturi, R [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
来源
FOURTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS | 1999年
关键词
D O I
10.1109/CCC.1999.766282
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k greater than or equal to 3. Define s(k) (for k greater than or equal to 3) to be the infimum of {delta : there exists an O(2(delta n)) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k greater than or equal to 3, s(k) > 0. In other words, for k greater than or equal to 3, k-SAT does not have a subexponential-time algorithm. In this paper; we show that sk is an increasing sequence assuming ETH for k-SAT. Let s(infinity) be the limit of s(k). We will in fact show that s(k) less than or equal to (I - d/k)s(infinity) for some constant d > 0.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 18 条
[1]  
ALON N, 1992, PROBABILISTIC METHOD
[2]  
BIEGEL R, 1995, P 36 ANN IEEE S FDN, P444
[3]  
FEDER T, UNPUB WORST CASE TIM
[4]  
HIRSCH EA, 1997, SIAM C DISCR ALG
[5]  
IMPAGLIAZZO R, 1998 ANN IEEE S FDN
[6]  
JIAN T, 1986, IEEE T COMPUT, V35, P847, DOI 10.1109/TC.1986.1676847
[7]  
KULLMANN O, 1997, UNPUB INFORMATION CO
[8]   SOLVING SATISFIABILITY IN LESS THAN 2N STEPS [J].
MONIEN, B ;
SPECKENMEYER, E .
DISCRETE APPLIED MATHEMATICS, 1985, 10 (03) :287-295
[9]  
PATURI R, 1997, P 38 ANN IEEE S FDN
[10]  
PATURI R, 1998, 1998 ANN IEEE S FDN