Predicting Biker Density at Bikeshare Station Intersections in San Francisco
被引:1
|
作者:
Dubey, Mahika
论文数: 0引用数: 0
h-index: 0
机构:
UC Santa Cruz, Computat Media, Santa Cruz, CA 95064 USAUC Santa Cruz, Computat Media, Santa Cruz, CA 95064 USA
Dubey, Mahika
[1
]
Ortiz, Alan Peral
论文数: 0引用数: 0
h-index: 0
机构:
UC Santa Cruz, Comp Sci, Santa Cruz, CA USAUC Santa Cruz, Computat Media, Santa Cruz, CA 95064 USA
Ortiz, Alan Peral
[2
]
Agrawal, Rakshit
论文数: 0引用数: 0
h-index: 0
机构:
UC Santa Cruz, Comp Sci, Santa Cruz, CA USAUC Santa Cruz, Computat Media, Santa Cruz, CA 95064 USA
Agrawal, Rakshit
[2
]
Forbes, Angus G.
论文数: 0引用数: 0
h-index: 0
机构:
UC Santa Cruz, Computat Media, Santa Cruz, CA 95064 USAUC Santa Cruz, Computat Media, Santa Cruz, CA 95064 USA
Forbes, Angus G.
[1
]
机构:
[1] UC Santa Cruz, Computat Media, Santa Cruz, CA 95064 USA
[2] UC Santa Cruz, Comp Sci, Santa Cruz, CA USA
来源:
2019 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC)
|
2019年
关键词:
machine learning;
prediction methods;
neural networks;
smart transportation;
public transportation;
bicycles;
user interfaces;
visualization;
BICYCLE;
D O I:
10.1109/ghtc46095.2019.9033019
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Bike sharing platforms are becoming increasingly common alternatives to public transportation in cities, improving accessibility to areas not reachable by bus, train, or tram. While this can be beneficial for improving city connectivity, it also increases the likelihood of biker related accidents and vehicle collisions, especially in areas where protected bike lanes and safety infrastructure are not already in place. We compare machine learning models to predict biker density at road intersections in the city of San Francisco, using publicly available trip data from the city's most widely used bikeshare service, Ford GoBike, evaluating our model performance by monitoring mean squared error. Alongside our predictive models we develop a heatmap visualization application to display our predictions, providing an additional mode of interaction for users to access the forecasted information. The intended usage of our work is to predict areas of highest biker density at different times so that drivers and bikers can experience improved shared road safety. The deployment of our models can also inform city planning and alternative public transportation development.
机构:
Wayne State Univ, Coll Engn, Dept Civil & Environm Engn, Detroit, MI 48202 USAWayne State Univ, Coll Engn, Dept Civil & Environm Engn, Detroit, MI 48202 USA
Qian, Xiaodong
Jaller, Miguel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Inst Transportat Studies, Dept Civil Engn & Environm Engn, Sustainable Freight Res Program, One Shields Ave, Ghausi Hall 3143, Davis, CA 95616 USAWayne State Univ, Coll Engn, Dept Civil & Environm Engn, Detroit, MI 48202 USA
Jaller, Miguel
Circella, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Inst Transportat Studies, Revolut Future Mobil Program 3, One Shields Ave, Davis, CA 95616 USA
Univ Ghent, Dept Geog, Krijgslaan 281, S8, B-9000 Ghent, BelgiumWayne State Univ, Coll Engn, Dept Civil & Environm Engn, Detroit, MI 48202 USA