Numerical range and compressions of the shift

被引:2
作者
Bickel, Kelly [1 ]
Gorkin, Pamela [1 ]
机构
[1] Bucknell Univ, Dept Math, 380 Olin Sci Bldg, Lewisburg, PA 17837 USA
来源
COMPLEX ANALYSIS AND SPECTRAL THEORY | 2020年 / 743卷
基金
美国国家科学基金会;
关键词
Numerical Range; Envelopes; Compressions of Shifts; Unitary Dilations; CROUZEIXS CONJECTURE; SIMPLE PROOF; ELLIPSES; RADIUS; THEOREM; VALUES;
D O I
10.1090/conm/743/14964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical range of a bounded, linear operator on a Hilbert space is a set in C that encodes important information about the operator. In this survey paper, we first consider numerical ranges of matrices and discuss several connections with envelopes of families of curves. We then turn to the shift operator, perhaps the most important operator on the Hardy space H-2(D), and compressions of the shift operator to model spaces, i.e. spaces of the form H-2 circle minus theta H-2 where. is inner theta For these compressions of the shift operator, we provide a survey of results on the connection between their numerical ranges and the numerical ranges of their unitary dilations. We also discuss related results for compressed shift operators on the bidisk associated to rational inner functions and conclude the paper with a brief discussion of the Crouzeix conjecture.
引用
收藏
页码:241 / 261
页数:21
相关论文
共 68 条
[1]   GEOMETRIC AND TOPOLOGICAL PROPERTIES OF THE NUMERICAL RANGE [J].
AGLER, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (06) :767-777
[2]  
Agler J., 2002, MATHEMATICS, V44
[3]  
Agler J., 1990, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., V48, P47
[4]   Toral algebraic sets and function theory on polydisks [J].
Agler, Jim ;
McCarthy, John E. ;
Stankus, Mark .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (04) :551-562
[5]  
AXELSSON O., 1994, Linear Multilinear Algebra, V37, P225
[6]   Convex domains and K-spectral sets [J].
Badea, C ;
Crouzeix, M ;
Delyon, B .
MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (02) :345-365
[7]   Scattering systems with several evolutions and multidimensional input/state/output systems [J].
Ball, JA ;
Sadosky, C ;
Vinnikov, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (03) :323-393
[8]   The numerical range of a contraction with finite defect numbers [J].
Bercovici, Hari ;
Timotin, Dan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) :42-56
[9]   ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :239-255
[10]  
Bickel K., 1988, APPL ENVELOPES UNPUB