Numerical approaches for multidimensional simulations of stellar explosions

被引:17
作者
Chen, Ke-Jung [1 ,2 ]
Heger, Alexander [3 ]
Almgren, Ann S. [4 ]
机构
[1] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
[2] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[3] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Computational astrophysics; Supernova; Stellar evolution; Massive stars; EVOLUTION; HYDRODYNAMICS; SUPERNOVAE; CASTRO; FLASH;
D O I
10.1016/j.ascom.2014.01.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce numerical algorithms for initializing multidimensional simulations of stellar explosions with 1D stellar evolution models. The initial mapping from 1D profiles onto multidimensional grids can generate severe numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities. We introduce a numerical scheme for mapping 1D spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We verify our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping. We also introduce a numerical scheme for initializing multidimensional supernova simulations with realistic perturbations predicted by 1D stellar evolution models. Instead of seeding 3D stellar profiles with random perturbations, we imprint them with velocity perturbations that reproduce the Kolmogorov energy spectrum expected for highly turbulent convective regions in stars. Our models return Kolmogorov energy spectra and vortex structures like those in turbulent flows before the modes become nonlinear. Finally, we describe approaches to determining the resolution for simulations required to capture fluid instabilities and nuclear burning. Our algorithms are applicable to multidimensional simulations besides stellar explosions that range from astrophysics to cosmology. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 26 条
[1]   CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-GRAVITY [J].
Almgren, A. S. ;
Beckner, V. E. ;
Bell, B. ;
Day, M. S. ;
Howell, L. H. ;
Joggerst, C. C. ;
Lijewski, M. J. ;
Nonaka, A. ;
Singer, M. ;
Zingale, M. .
ASTROPHYSICAL JOURNAL, 2010, 715 (02) :1221-1238
[2]  
[Anonymous], 1968, Principles of Stellar Structure
[3]   TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE [J].
Arnett, W. David ;
Meakin, Casey .
ASTROPHYSICAL JOURNAL, 2011, 733 (02)
[4]   DYNAMICS OF SUPERNOVA EXPLOSION RESULTING FROM PAIR FORMATION [J].
BARKAT, Z ;
RAKAVY, G ;
SACK, N .
PHYSICAL REVIEW LETTERS, 1967, 18 (10) :379-&
[5]   THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS [J].
COLELLA, P ;
WOODWARD, PR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :174-201
[6]  
Davies PJ, 2004, PLANT HORMONES: BIOSYNTHESIS, SIGNAL TRANSDUCTION, ACTION, P1
[7]  
Frisch U., 1995, Turbulence: The Legacy of A
[8]   Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes [J].
Fryxell, B ;
Olson, K ;
Ricker, P ;
Timmes, FX ;
Zingale, M ;
Lamb, DQ ;
MacNeice, P ;
Rosner, R ;
Truran, JW ;
Tufo, H .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2000, 131 (01) :273-334
[9]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]
[10]   The nucleosynthetic signature of Population III [J].
Heger, A ;
Woosley, SE .
ASTROPHYSICAL JOURNAL, 2002, 567 (01) :532-543