Semantic Segmentation by Early Region Proxy

被引:15
作者
Zhang, Yifan [1 ]
Pang, Bo [1 ]
Lu, Cewu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.00132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Typical vision backbones manipulate structured features. As a compromise, semantic segmentation has long been modeled as per-point prediction on dense regular grids. In this work, we present a novel and efficient modeling that starts from interpreting the image as a tessellation of learnable regions, each of which has flexible geometrics and carries homogeneous semantics. To model region-wise context, we exploit Transformer to encode regions in a sequence-to-sequence manner by applying multi-layer self-attention on the region embeddings, which serve as proxies of specific regions. Semantic segmentation is now carried out as per-region prediction on top of the encoded region embeddings using a single linear classifier, where a decoder is no longer needed. The proposed RegProxy model discards the common Cartesian feature layout and operates purely at region level. Hence, it exhibits the most competitive performance-efficiency trade-off compared with the conventional dense prediction methods. For example, on ADE20K, the small-sized RegProxy-S/16 out-performs the best CNN model using 25% parameters and 4% computation, while the largest RegProxy-Z/16 achieves 52.9 mIoU which outperforms the state-of-the-art by 2.1% with fewer resources. Codes and models are available at https://github.com/YiF-Zhang/RegionProxy.
引用
收藏
页码:1248 / 1258
页数:11
相关论文
共 55 条
  • [1] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [2] Ba Jimmy Lei, 2016, LAYER NORMALIZATION, DOI 10.48550/arXiv.1607.06450
  • [3] Chen L.C., 2014, ARXIV14127062, V40, P357
  • [4] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [5] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [6] Cheng Bowen, 2021, ARXIV210706278, V34, P17864
  • [7] Contributors M., 2020, MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark
  • [8] The Cityscapes Dataset for Semantic Urban Scene Understanding
    Cordts, Marius
    Omran, Mohamed
    Ramos, Sebastian
    Rehfeld, Timo
    Enzweiler, Markus
    Benenson, Rodrigo
    Franke, Uwe
    Roth, Stefan
    Schiele, Bernt
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3213 - 3223
  • [9] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [10] Dosovitskiy A., 2020, INT C LEARN REPR