Protein S-nitrosylation: What's going on in plants?

被引:124
|
作者
Astier, Jeremy [1 ,2 ]
Kulik, Anna [1 ,2 ]
Koen, Emmanuel [1 ,2 ]
Besson-Bard, Angelique [1 ,2 ]
Bourque, Stephane [1 ,2 ]
Jeandroz, Sylvain [2 ,3 ]
Lamotte, Olivier [2 ,4 ]
Wendehenne, David [1 ,2 ]
机构
[1] Univ Bourgogne, UMR Agroecol 1347, F-21000 Dijon, France
[2] ERL, CNRS 6300, F-21000 Dijon, France
[3] AgroSup, UMR Agroecol 1347, F-21000 Dijon, France
[4] CNRS, UMR Agroecol 1347, F-21000 Dijon, France
关键词
Nitric oxide; Plant; Plant immunity; Posttranslational protein modification; S-Nitrosylation; NITRIC-OXIDE SYNTHASE; SYSTEMIC ACQUIRED-RESISTANCE; ARABIDOPSIS-THALIANA; CELL-DEATH; NITRATE REDUCTASE; SALICYLIC-ACID; IN-VIVO; SUBCELLULAR-LOCALIZATION; GLYCINE DECARBOXYLASE; NITROSATIVE STRESS;
D O I
10.1016/j.freeradbiomed.2012.06.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-nitrosylation in plants. Subsequent biochemical and in silico structural studies revealed certain mechanisms through which S-nitrosylation impacts their functions. Furthermore, first insights into the physiological relevance of S-nitrosylation, particularly in controlling plant immune responses, have been recently reported. Collectively, these discoveries greatly extend our knowledge of NO functions and of the molecular processes inherent to signal transduction in plants. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1101 / 1110
页数:10
相关论文
共 50 条
  • [1] Protein S-nitrosylation in plants under biotic stress
    Machchhu, Farhin
    Wany, Aakanksha
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2023,
  • [2] Protein S-Nitrosylation in plants: Current progresses and challenges
    Jian Feng
    Lichao Chen
    Jianru Zuo
    JournalofIntegrativePlantBiology, 2019, 61 (12) : 1206 - 1223
  • [3] Protein S-nitrosylation in plants under biotic stress
    Farhin Machchhu
    Aakanksha Wany
    Theoretical and Experimental Plant Physiology, 2023, 35 : 331 - 339
  • [4] Protein S-Nitrosylation in plants: Current progresses and challenges
    Feng, Jian
    Chen, Lichao
    Zuo, Jianru
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2019, 61 (12) : 1206 - 1223
  • [5] Protein S-nitrosylation in programmed cell death in plants
    Dengjing Huang
    Jianqiang Huo
    Jing Zhang
    Chunlei Wang
    Bo Wang
    Hua Fang
    Weibiao Liao
    Cellular and Molecular Life Sciences, 2019, 76 : 1877 - 1887
  • [6] Protein S-Nitrosylation in Plants: Photorespiratory Metabolism and NO Signaling
    Gupta, Kapuganti J.
    SCIENCE SIGNALING, 2011, 4 (154)
  • [7] Protein S-nitrosylation in plants under biotic stress
    Machchhu, Farhin
    Wany, Aakanksha
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2023, 35 (04) : 331 - 339
  • [8] Functions and Methods of Protein S-Nitrosylation Studies in Plants
    Ticha, Tereza
    Kubienova, Lucie
    Luhova, Lenka
    Petrivalsky, Marek
    CHEMICKE LISTY, 2015, 109 (10): : 775 - 783
  • [9] Protein S-nitrosylation in programmed cell death in plants
    Huang, Dengjing
    Huo, Jianqiang
    Zhang, Jing
    Wang, Chunlei
    Wang, Bo
    Fang, Hua
    Liao, Weibiao
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2019, 76 (10) : 1877 - 1887
  • [10] Protein S-nitrosylation: specificity and identification strategies in plants
    Lamotte, Olivier
    Bertoldo, Jean B.
    Besson-Bard, Angelique
    Rosnoblet, Claire
    Aime, SEBastien
    Hichami, Siham
    Terenzi, Hernan
    Wendehenne, David
    FRONTIERS IN CHEMISTRY, 2015, 2