Bifurcation of positive periodic solutions of first-order impulsive differential equations

被引:4
|
作者
Ma, Ruyun [1 ]
Yang, Bianxia [1 ]
Wang, Zhenyan [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
来源
关键词
Krein-Rutman theorem; topological degree; bifurcation from interval; impulsive boundary value problem; existence and multiplicity; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1186/1687-2770-2012-83
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a global description of the branches of positive solutions of first-order impulsive boundary value problem: {u'(t) + a(t) u(t) = lambda f (t, u(t)), t is an element of (0, 1), t not equal t(k), k = 1, ... , p, u(t(k)(+)) = u((t-)(k)) + lambda I-k(u(t(k))), k = 1, ... , p, u(0) = u(1), which is not necessarily linearizable. Where lambda > 0 is a parameter, 0 < t(1) < t(2) < ... < t(p) < 1 are given impulsive points. Our approach is based on the Krein-Rutman theorem, topological degree, and global bifurcation techniques.
引用
收藏
页数:16
相关论文
共 50 条