Adiabatic theorem for quantum systems with spectral degeneracy

被引:30
作者
Rigolin, Gustavo [1 ]
Ortiz, Gerardo [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
[2] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1103/PhysRevA.85.062111
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By stating the adiabatic theorem of quantum mechanics in a clear and rigorous way, we establish a necessary condition and a sufficient condition for its validity, where the latter is obtained employing our recently developed adiabatic perturbation theory. Also, we simplify further the sufficient condition into a useful and simple practical test at the expense of its mathematical rigor. We present results for the most general case of quantum systems, i.e., those with degenerate energy spectra. These conditions are of upmost importance for assessing the validity of practical implementations of non-Abelian braiding and adiabatic quantum computation. To illustrate the degenerate adiabatic approximation, and the necessary and sufficient conditions for its validity, we analyze in depth an exactly solvable time-dependent degenerate problem.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1962, QUANTUM MECH
[3]   A REALIZATION OF BERRY NON-ABELIAN GAUGE FIELD [J].
BISWAS, SN .
PHYSICS LETTERS B, 1989, 228 (03) :440-442
[4]  
Comparat D, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.138902
[5]   Quantum annealing with manufactured spins [J].
Johnson, M. W. ;
Amin, M. H. S. ;
Gildert, S. ;
Lanting, T. ;
Hamze, F. ;
Dickson, N. ;
Harris, R. ;
Berkley, A. J. ;
Johansson, J. ;
Bunyk, P. ;
Chapple, E. M. ;
Enderud, C. ;
Hilton, J. P. ;
Karimi, K. ;
Ladizinsky, E. ;
Ladizinsky, N. ;
Oh, T. ;
Perminov, I. ;
Rich, C. ;
Thom, M. C. ;
Tolkacheva, E. ;
Truncik, C. J. S. ;
Uchaikin, S. ;
Wang, J. ;
Wilson, B. ;
Rose, G. .
NATURE, 2011, 473 (7346) :194-198
[6]   Non-Abelian anyons and topological quantum computation [J].
Nayak, Chetan ;
Simon, Steven H. ;
Stern, Ady ;
Freedman, Michael ;
Das Sarma, Sankar .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :1083-1159
[7]   Colloquium: Nonequilibrium dynamics of closed interacting quantum systems [J].
Polkovnikov, Anatoli ;
Sengupta, Krishnendu ;
Silva, Alessandro ;
Vengalattore, Mukund .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :863-883
[8]   Adiabatic Perturbation Theory and Geometric Phases for Degenerate Systems [J].
Rigolin, Gustavo ;
Ortiz, Gerardo .
PHYSICAL REVIEW LETTERS, 2010, 104 (17)
[9]   Beyond the quantum adiabatic approximation: Adiabatic perturbation theory [J].
Rigolin, Gustavo ;
Ortiz, Gerardo ;
Ponce, Victor Hugo .
PHYSICAL REVIEW A, 2008, 78 (05)
[10]   Comment on "Quantitative Condition is Necessary in Guaranteeing the Validity of the Adiabatic Approximation" Reply [J].
Tong, D. M. .
PHYSICAL REVIEW LETTERS, 2011, 106 (13)