Graph relations, clique divergence and surface triangulations

被引:14
作者
Larrión, F
Neumann-Lara, V
Pizaña, MA
机构
[1] Natl Autonomous Univ Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Ingn Elect, Mexico City 09340, DF, Mexico
关键词
iterated clique graphs; surface triangulations; coaffine graphs;
D O I
10.1002/jgt.20126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work has two aims: first, we introduce a powerful technique for proving clique divergence when the graph satisfies a certain symmetry condition. Second, we prove that each closed surface admits a clique divergent triangulation. By definition, a graph is clique divergent if the orders of its iterated clique graphs tend to infinity, and the clique graph of a graph is the intersection graph of its maximal complete subgraphs. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 15 条
[1]   FINDING ALL CLIQUES OF AN UNDIRECTED GRAPH [H] [J].
BRON, C ;
KERBOSCH, J .
COMMUNICATIONS OF THE ACM, 1973, 16 (09) :575-577
[2]  
*GAP GROUP, 2002, GAP GROUPS ALG PROGR
[3]   CLEAN TRIANGULATIONS [J].
HARTSFIELD, N ;
RINGEL, G .
COMBINATORICA, 1991, 11 (02) :145-155
[4]   Clique divergent clockwork graphs and partial orders [J].
Larrión, F ;
Neumann-Lara, V ;
Pizaña, MA .
DISCRETE APPLIED MATHEMATICS, 2004, 141 (1-3) :195-207
[5]   Locally C6 graphs are clique divergent [J].
Larrión, F ;
Neumann-Lara, V .
DISCRETE MATHEMATICS, 2000, 215 (1-3) :159-170
[6]   Whitney triangulations, local girth and iterated clique graphs [J].
Larrión, F ;
Neumann-Lara, V ;
Pizaña, MA .
DISCRETE MATHEMATICS, 2002, 258 (1-3) :123-135
[7]   On clique divergent graphs with linear growth [J].
Larrión, F ;
Neumann-Lara, V .
DISCRETE MATHEMATICS, 2002, 245 (1-3) :139-153
[8]  
Larrion F., 2003, MAT CONT, V25, P135
[9]  
Neumann-Lara V., 1978, C INT CNRS, V260, P313
[10]  
Neumann-Lara V., 1981, C MATH SOC J BOLYAI, V25, P563