Profiles of the daytime atmospheric turbulence above Big Bear solar observatory

被引:38
作者
Kellerer, A. [1 ]
Gorceix, N. [1 ]
Marino, J. [2 ]
Cao, W. [1 ,3 ]
Goode, P. R. [1 ,3 ]
机构
[1] Big Bear Solar Observ, Big Bear City, CA 92314 USA
[2] Natl Solar Observ, Sunspot, NM 88340 USA
[3] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07012 USA
基金
美国国家科学基金会;
关键词
instrumentation: adaptive optics; atmospheric effects; Sun: general; SITE SURVEY; TELESCOPE; MONITOR;
D O I
10.1051/0004-6361/201218844
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Space weather has become acutely critical for today's global communication networks. To understand its driving forces we need to observe the Sun with high angular-resolution, and within large fields-of-view, i.e. with multi-conjugate adaptive optics correction. Aims. The design of a multi-conjugate adaptive optical system requires the knowledge of the altitude distribution of atmospheric turbulence. We have therefore measured daytime turbulence profiles above the New Solar Telescope (NST), on Big Bear Lake. Methods. To this purpose, a wide-field wavefront sensor was installed behind the NST. The variation of the wavefront distortions with angular direction allows the reconstruction of the distribution of turbulence. Results. The turbulence is found to have three origins: 1. a ground layer (<500 m) that contains 55-65% of the turbulence, 2. a boundary layer between 1-7 km comprises 30-40% of the turbulent energy, 3. and the remaining similar to 5% are generated in the tropopause, which is above 12 km in summer and between 8 and 12 km in winter. Conclusions. A multi-conjugate adaptive optical system should thus aim at correcting the ground turbulence, the center of the boundary layer at roughly 3 km altitude and, eventually, the upper boundary layer around 6 km altitude.
引用
收藏
页数:10
相关论文
共 16 条
[1]   Site testing in summer at Dome C, Antarctica [J].
Aristidi, E ;
Agabi, A ;
Fossat, E ;
Azouit, M ;
Martin, F ;
Sadibekova, T ;
Travouillon, T ;
Vernin, J ;
Ziad, A .
ASTRONOMY & ASTROPHYSICS, 2005, 444 (02) :651-659
[2]   A seeing monitor for solar and other extended object observations [J].
Beckers, JM .
EXPERIMENTAL ASTRONOMY, 2001, 12 (01) :1-20
[3]   Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear [J].
Cao, W. ;
Gorceix, N. ;
Coulter, R. ;
Ahn, K. ;
Rimmele, T. R. ;
Goode, P. R. .
ASTRONOMISCHE NACHRICHTEN, 2010, 331 (06) :636-639
[4]   Field-dependent adaptive optics correction derived with the spectral ratio technique [J].
Denker, C. ;
Deng, N. ;
Rimmele, T. R. ;
Tritschler, A. ;
Verdoni, A. .
SOLAR PHYSICS, 2007, 241 (02) :411-426
[5]  
Denker C., 2006, SPIE, V6267, P62670
[6]   The NST: First results and some lessons for ATST and EST [J].
Goode, P. R. ;
Coulter, R. ;
Gorceix, N. ;
Yurchyshyn, V. ;
Cao, W. .
ASTRONOMISCHE NACHRICHTEN, 2010, 331 (06) :620-623
[7]   HIGHEST RESOLUTION OBSERVATIONS OF THE QUIETEST SUN [J].
Goode, Philip R. ;
Yurchyshyn, Vasyl ;
Cao, Wenda ;
Abramenko, Valentyna ;
Andic, Aleksandra ;
Ahn, Kwangsu ;
Chae, Jongchul .
ASTROPHYSICAL JOURNAL LETTERS, 2010, 714 (01) :L31-L35
[8]  
Hill F., 2006, SPIE, P6267
[9]  
IRBAH A, 1993, ASTRON ASTROPHYS, V276, P663
[10]   Evaluation of image-shift measurement algorithms for solar Shack-Hartmann wavefront sensors [J].
Lofdahl, M. G. .
ASTRONOMY & ASTROPHYSICS, 2010, 524