Robust multi-label transfer feature learning for early diagnosis of Alzheimer's disease

被引:54
作者
Cheng, Bo [1 ,2 ]
Liu, Mingxia [3 ,4 ]
Zhang, Daoqiang [5 ]
Shen, Dinggang [3 ,4 ,6 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Intelligent Informat Proc & Control Chong, Chongqing 404100, Peoples R China
[2] Chongqing Three Gorges Univ, Chongqing Engn Res Ctr Internet Things & Intellig, Chongqing 404100, Peoples R China
[3] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, BRIC, Chapel Hill, NC 27599 USA
[5] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Jiangsu, Peoples R China
[6] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Transfer learning; Multi-label learning; Feature learning; Alzheimer's disease (AD); MILD COGNITIVE IMPAIRMENT; FEATURE-SELECTION; CSF BIOMARKERS; BRAIN ATROPHY; BASE-LINE; MCI; PREDICTION; CONVERSION; MRI; AD;
D O I
10.1007/s11682-018-9846-8
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Transfer learning has been successfully used in the early diagnosis of Alzheimer's disease (AD). In these methods, data from one single or multiple related source domain(s) are employed to aid the learning task in the target domain. However, most of the existing methods utilize data from all source domains, ignoring the fact that unrelated source domains may degrade the learning performance. Also, previous studies assume that class labels for all subjects are reliable, without considering the ambiguity of class labels caused by slight differences between early AD patients and normal control subjects. To address these issues, we propose to transform the original binary class label of a particular subject into a multi-bit label coding vector with the aid of multiple source domains. We further develop a robust multi-label transfer feature learning (rMLTFL) model to simultaneously capture a common set of features from different domains (including the target domain and all source domains) and to identify the unrelated source domains. We evaluate our method on 406 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with baseline magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) data. The experimental results show that the proposed rMLTFL method can effectively improve the performance of AD diagnosis, compared with several state-of-the-art methods.
引用
收藏
页码:138 / 153
页数:16
相关论文
共 67 条
[1]  
Alzheimer's A, 2014, ALZHEIMERS DEMENT, V2014, pe47, DOI [DOI 10.1016/J.JALZ.2015.02.003, DOI 10.1016/J.JALZ.2010.01.009]
[2]  
[Anonymous], 2009, SLEP: Sparse Learning with Efficient Projections
[3]   Convex multi-task feature learning [J].
Argyriou, Andreas ;
Evgeniou, Theodoros ;
Pontil, Massimiliano .
MACHINE LEARNING, 2008, 73 (03) :243-272
[4]   CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment [J].
Bouwman, F. H. f ;
Schoonenboom, S. N. M. ;
van der Flier, W. M. ;
van Elk, E. J. ;
Kok, A. ;
Barkhof, F. ;
Blankenstein, M. A. ;
Scheltens, Ph .
NEUROBIOLOGY OF AGING, 2007, 28 (07) :1070-1074
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]   ASL Perfusion MRI Predicts Cognitive Decline and Conversion From MCI to Dementia [J].
Chao, Linda L. ;
Buckley, Shannon T. ;
Kornak, John ;
Schuff, Norbert ;
Madison, Catherine ;
Yaffe, Kristine ;
Miller, Bruce L. ;
Kramer, Joel H. ;
Weiner, Michael W. .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2010, 24 (01) :19-27
[7]   Accelerated Gradient Method for Multi-Task Sparse Learning Problem [J].
Chen, Xi ;
Pan, Weike ;
Kwok, James T. ;
Carbonell, Jaime G. .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, :746-+
[8]   Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease [J].
Cheng, Bo ;
Liu, Mingxia ;
Shen, Dinggang ;
Li, Zuoyong ;
Zhang, Daoqiang .
NEUROINFORMATICS, 2017, 15 (02) :115-132
[9]   Multimodal manifold-regularized transfer learning for MCI conversion prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Suk, Heung-Il ;
Shen, Dinggang ;
Zhang, Daoqiang .
BRAIN IMAGING AND BEHAVIOR, 2015, 9 (04) :913-926
[10]   Domain Transfer Learning for MCI Conversion Prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Zhang, Daoqiang ;
Munsell, Brent C. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) :1805-1817