Substep active deep learning framework for image classification

被引:2
|
作者
Li, Guoqiang [1 ]
Gong, Ning [1 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Convolutional neural network; Active learning; Substep; Image classification; ALGORITHM; NETWORKS;
D O I
10.1007/s10044-020-00894-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In image classification, the acquisition of images labels is often expensive and time-consuming. To reduce this labeling cost, active learning is introduced into this field. Although some active learning algorithms have been proposed, they are all single-sampling strategies or combined with multiple-sampling strategies simultaneously (i.e., correlation, uncertainty and label-based measure), without considering the relationship between substep sampling strategies. To this end, we designed a new active learning scheme called substep active deep learning (SADL) for image classification. In SADL, samples were selected by correlation strategy and then determined by the uncertainty and label-based measurement. Finally, it is fed to CNN model training. Experiments were performed with three data sets (i.e., MNIST, Fashion-MNIST and CIFAR-10) to compare against state-of-the-art active learning algorithms, and it can be verified that our substep active deep learning is rational and effective.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 50 条
  • [11] A Scale-Invariant Framework For Image Classification With Deep Learning
    Jiang, Yalong
    Chi, Zheru
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1019 - 1024
  • [12] A Semi-supervised Active Learning Framework for Image Classification
    Li, Han-yi
    Yang, Ming
    Kang, Nan-nan
    Yue, Lu-lu
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4765 - 4769
  • [13] A Deep Learning Framework for Transforming Image Reconstruction Into Pixel Classification
    Pawar, Kamlesh
    Chen, Zhaolin
    Shah, N. Jon
    Egan, Gary F.
    IEEE ACCESS, 2019, 7 : 177690 - 177702
  • [14] Cost-Effective Active Learning for Deep Image Classification
    Wang, Keze
    Zhang, Dongyu
    Li, Ya
    Zhang, Ruimao
    Lin, Liang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (12) : 2591 - 2600
  • [15] Multi-criteria active deep learning for image classification
    Yuan, Jin
    Hou, Xingxing
    Xiao, Yaoqiang
    Cao, Da
    Guan, Weili
    Nie, Liqiang
    KNOWLEDGE-BASED SYSTEMS, 2019, 172 : 86 - 94
  • [16] DEEP ADVERSARIAL ACTIVE LEARNING WITH MODEL UNCERTAINTY FOR IMAGE CLASSIFICATION
    Zhu, Zheng
    Wang, Hongxing
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1711 - 1715
  • [17] Active-Learning-Incorporated Deep Transfer Learning for Hyperspectral Image Classification
    Lin, Jianzhe
    Zhao, Liang
    Li, Shuying
    Ward, Rabab
    Wang, Z. Jane
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4048 - 4062
  • [18] An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation
    Zhang, Zhou
    Pasolli, Edoardo
    Crawford, Melba M.
    Tilton, James C.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) : 640 - 654
  • [19] The Smart in Smart Cities: A Framework for Image Classification Using Deep Learning
    Al-Qudah, Rabiah
    Khamayseh, Yaser
    Aldwairi, Monther
    Khan, Sarfraz
    SENSORS, 2022, 22 (12)
  • [20] Practice makes perfect: An adaptive active learning framework for image classification
    Ye, Zhipeng
    Liu, Peng
    Liu, Jiafeng
    Tang, Xianglong
    Zhao, Wei
    NEUROCOMPUTING, 2016, 196 : 95 - 106