Extended isogeometric analysis for material interface problems

被引:34
作者
Jia, Yue [1 ]
Anitescu, Cosmin [1 ]
Ghorashi, Seyed Shahram [2 ]
Rabczuk, Timon [1 ,3 ]
机构
[1] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[2] Bauhaus Univ Weimar, Res Training Grp 1462, D-99423 Weimar, Germany
[3] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul, South Korea
关键词
Isogeometric analysis; NURBS; XIGA; enrichment functions; Poisson's equation; inverse mapping; curved triangular element; FINITE-ELEMENT-METHOD; MESHFREE THIN SHELL; NURBS; PARTITION; CAD;
D O I
10.1093/imamat/hxu004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an approach to extend the isogeometric analysis (IGA) method to solve material interface problems. The development is carried out through incorporating the advantages of the extended finite element method into the standard IGA approach for solving problems with discontinuities. By applying both the XIGA and IGA methods to solve Poisson's equation problem containing weak discontinuities, we demonstrate that the XIGA achieves the optimal convergence rate, whereas the IGA only converges suboptimally. The proposed method is then successfully applied to solve bimaterial and curved material interface problems.
引用
收藏
页码:608 / 633
页数:26
相关论文
共 38 条
  • [31] NURBS-enhanced finite element method (NEFEM)
    Sevilla, Ruben
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (01) : 56 - 83
  • [32] NURBS-Enhanced Finite Element Method (NEFEM) A Seamless Bridge Between CAD and FEM
    Sevilla, Ruben
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2011, 18 (04) : 441 - 484
  • [33] Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM
    Sevilla, Ruben
    Fernandez-Mendez, Sonia
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (10) : 1209 - 1220
  • [34] Wachspress EL, 1973, J I MATH APPL, V11, P83
  • [35] Fracture modeling using meshless methods and level sets in 3D: Framework and modeling
    Zhuang, X.
    Augarde, C. E.
    Mathisen, K. M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (11) : 969 - 998
  • [36] Zienkiewicz O.C., 1971, The Finite Element Method in Engineering Science
  • [37] CURVED ELEMENTS IN FINITE-ELEMENT METHOD .1.
    ZLAMAL, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (01) : 229 - 240
  • [38] Zlamal M., 1973, International Journal for Numerical Methods in Engineering, V5, P367, DOI 10.1002/nme.1620050307