Variable Clustering in High-Dimensional Linear Regression: The R Package clere

被引:0
作者
Yengo, Loic [1 ]
Jacques, Julien [2 ]
Biernacki, Christophe [3 ,4 ]
Canouil, Mickael [1 ]
机构
[1] EGID FR3508 European Genom Inst Diabet, Lille Inst Biol, CNRS UMR 8199, Integrated Genom & Metab Dis Modeling, 1 Rue Prof Calmette,BP 447, F-59021 Lille, France
[2] Univ Lyon Lumiere, ERIC Lab, 5 Ave Pierre Mendes France, F-69676 Bron, France
[3] Univ Lille 1, Inria, MODAL Team, Cite Sci, F-59655 Villeneuve Dascq, France
[4] Univ Lille 1, UMR CNRS 8524, Lab Paul Painleve, Cite Sci, F-59655 Villeneuve Dascq, France
来源
R JOURNAL | 2016年 / 8卷 / 01期
关键词
SELECTION; REGULARIZATION; SHRINKAGE; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dimension reduction is one of the biggest challenges in high-dimensional regression models. We recently introduced a new methodology based on variable clustering as a means to reduce dimensionality. We present here the R package clere that implements some refinements of this methodology. An overview of the package functionalities as well as examples to run an analysis are described. Numerical experiments on real data were performed to illustrate the good predictive performance of our parsimonious method compared to standard dimension reduction approaches.
引用
收藏
页码:92 / 106
页数:15
相关论文
共 50 条
  • [1] MCEN: a method of simultaneous variable selection and clustering for high-dimensional multinomial regression
    Ren, Sheng
    Kang, Emily L.
    Lu, Jason L.
    STATISTICS AND COMPUTING, 2020, 30 (02) : 291 - 304
  • [2] Variable screening in multivariate linear regression with high-dimensional covariates
    Bizuayehu, Shiferaw B.
    Li, Lu
    Xu, Jin
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (03) : 241 - 253
  • [3] Random Subspace Method for high-dimensional regression with the R package regRSM
    Teisseyre, Pawel
    Klopotek, Robert A.
    Mielniczuk, Jan
    COMPUTATIONAL STATISTICS, 2016, 31 (03) : 943 - 972
  • [4] g.ridge: An R Package for Generalized Ridge Regression for Sparse and High-Dimensional Linear Models
    Emura, Takeshi
    Matsumoto, Koutarou
    Uozumi, Ryuji
    Michimae, Hirofumi
    SYMMETRY-BASEL, 2024, 16 (02):
  • [5] The Cluster Elastic Net for High-Dimensional Regression With Unknown Variable Grouping
    Witten, Daniela M.
    Shojaie, Ali
    Zhang, Fan
    TECHNOMETRICS, 2014, 56 (01) : 112 - 122
  • [6] Robust and sparse estimation methods for high-dimensional linear and logistic regression
    Kurnaz, Fatma Sevinc
    Hoffmann, Irene
    Filzmoser, Peter
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 172 : 211 - 222
  • [7] Robust Estimation of High-Dimensional Linear Regression With Changepoints
    Cui, Xiaolong
    Geng, Haoyu
    Wang, Zhaojun
    Zou, Changliang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 7297 - 7319
  • [8] High-Dimensional Regression and Variable Selection Using CAR Scores
    Zuber, Verena
    Strimmer, Korbinian
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [9] A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High-Dimensional Linear Regression Models
    Chudik, A.
    Kapetanios, G.
    Pesaran, M. Hashem
    ECONOMETRICA, 2018, 86 (04) : 1479 - 1512
  • [10] ACCURACY ASSESSMENT FOR HIGH-DIMENSIONAL LINEAR REGRESSION
    Cai, T. Tony
    Guo, Zijian
    ANNALS OF STATISTICS, 2018, 46 (04) : 1807 - 1836