Connecting 1D and 2D Confined Polymer Dynamics to Its Bulk Behavior via Density Scaling

被引:28
作者
Adrjanowicz, Karolina [1 ,2 ]
Winkler, Roksana [1 ,2 ]
Dzienia, Andrzej [2 ,3 ]
Paluch, Marian [1 ,2 ]
Napolitano, Simone [4 ]
机构
[1] Univ Silesia, Inst Phys, 75 Pulku Piechoty 1, PL-41500 Chorzow, Poland
[2] Silesian Ctr Educ & Interdisciplinary Res SMCEBI, 75 Pulku Piechoty 1a, PL-41500 Chorzow, Poland
[3] Univ Silesia, Inst Chem, Szkolna 9 1, PL-40007 Katowice, Poland
[4] ULB, Fac Sci, Lab Polymer & Soft Matter Dynam, CP 223,Blvd Triomphe, B-1050 Brussels, Belgium
关键词
GLASS-TRANSITION TEMPERATURE; FREE-VOLUME; THIN-FILMS; T-G; RELAXATION; POLYSTYRENE; LIQUID; SIZE; NANOSTRUCTURES; DENSIFICATION;
D O I
10.1021/acsmacrolett.8b01006
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Under confinement, the properties of polymers can be much different from the bulk. Because of the potential applications in technology and hope to reveal fundamental problems related to the glass-transition, it is important to realize whether the nanoscale and macroscopic behavior of polymer glass-formers are related to each other in any simple way. In this work, we have addressed this issue by studying the segmental dynamics of poly(4-chlorostyrene) (P4ClS) in the bulk and upon geometrical confinement at the nanoscale level, in either one- (thin films on Al substrate) or two- (within alumina nanopores) dimensions. The results demonstrate that the segmental relaxation time, irrespective of the confinement size or its dimensionality, can be scaled onto a single curve when plotted versus p(gamma)/T with the same single scaling exponent, gamma = 3.1, obtained via measurements at high pressures in bulk. The implication is that the macro- and nanoscale confined polymer dynamics are intrinsically connected and governed by the same underlying rules.
引用
收藏
页码:304 / 309
页数:11
相关论文
共 58 条
[11]  
Chang K., 2008, NY TIMES
[12]   Thermodynamic scaling of diffusion in supercooled Lennard-Jones liquids [J].
Coslovich, D. ;
Roland, C. M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (05) :1329-1332
[13]  
Dreyfus C, 2003, PHYS REV E, V68, P11
[14]   Dynamics near Free Surfaces and the Glass Transition in Thin Polymer Films: A View to the Future [J].
Ediger, M. D. ;
Forrest, J. A. .
MACROMOLECULES, 2014, 47 (02) :471-478
[15]  
Floudas G, 2011, ADV DIELECTR, P1, DOI 10.1007/978-3-642-04902-6
[16]   The glass transition in thin polymer films [J].
Forrest, JA ;
Dalnoki-Veress, K .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2001, 94 (1-3) :167-196
[17]   Dependence of the glass transition temperature of polymer films on interfacial energy and thickness [J].
Fryer, DS ;
Peters, RD ;
Kim, EJ ;
Tomaszewski, JE ;
de Pablo, JJ ;
Nealey, PF ;
White, CC ;
Wu, WL .
MACROMOLECULES, 2001, 34 (16) :5627-5634
[18]   Confinement-Induced One-Dimensional Ferroelectric Polymer Arrays [J].
Garcia-Gutierrez, Mari-Cruz ;
Linares, Amelia ;
Hernandez, Jaime J. ;
Rueda, Daniel R. ;
Ezquerra, Tiberio A. ;
Poza, Pedro ;
Davies, Richard J. .
NANO LETTERS, 2010, 10 (04) :1472-1476
[19]  
Ghosh S, 2015, NAT MATER, V14, P505, DOI [10.1038/nmat4220, 10.1038/NMAT4220]
[20]   Revealed Architectures of Adsorbed Polymer Chains at Solid-Polymer Melt Interfaces [J].
Gin, Peter ;
Jiang, Naisheng ;
Liang, Chen ;
Taniguchi, Takashi ;
Akgun, Bulent ;
Satija, Sushil K. ;
Endoh, Maya K. ;
Koga, Tadanori .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)