Distributional geometry of squashed cones

被引:114
作者
Fursaev, Dmitri V. [1 ,2 ]
Patrushev, Alexander [2 ]
Solodukhin, Sergey N. [3 ,4 ]
机构
[1] Dubna Int Univ, Dubna 141980, Moscow Region, Russia
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[3] Univ Tours, Lab Math & Phys Theor CNRS UMR 7350, F-37200 Tours, France
[4] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 04期
关键词
BLACK-HOLE ENTROPY; ENTANGLEMENT ENTROPY;
D O I
10.1103/PhysRevD.88.044054
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A regularization procedure developed by D. V. Fursaev and S. N. Solodukhin, [Phys. Rev. D 52, 2133 (1995)] for the integral curvature invariants on manifolds with conical singularities is generalized to the case of squashed cones. In general, the squashed conical singularities do not have rotational O(2) symmetry in a subspace orthogonal to a singular surface Sigma so that the surface is allowed to have extrinsic curvatures. A new feature of the squashed conical singularities is that the surface terms in the integral invariants, in the limit of a small angle deficit, now depend also on the extrinsic curvatures of Sigma. A case of invariants which are quadratic polynomials of the Riemann curvature is elaborated in different dimensions and applied to several problems related to entanglement entropy. The results are in complete agreement with computations of the logarithmic terms in entanglement entropy of 4D conformal theories [S. N. Solodukhin, Phys. Lett. B 665, 305 (2008)]. Among other applications of the suggested method are logarithmic terms in entanglement entropy of nonconformal theories and a holographic formula for entanglement entropy in theories with gravity duals.
引用
收藏
页数:13
相关论文
共 28 条
[1]  
[Anonymous], ARXIV13044926
[2]   BLACK-HOLE ENTROPY AND THE DIMENSIONAL CONTINUATION OF THE GAUSS-BONNET THEOREM [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1994, 72 (07) :957-960
[3]  
Bianchi E., ARXIV12125183
[4]   Entanglement entropy for the n-sphere [J].
Casini, H. ;
Huerta, M. .
PHYSICS LETTERS B, 2010, 694 (02) :167-171
[5]  
de Boer J., ARXIV13050856
[6]   Holographic entanglement entropy in Lovelock gravities [J].
de Boer, Jan ;
Kulaxizi, Manuela ;
Parnachev, Andrei .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (07)
[7]   Hyperspherical entanglement entropy [J].
Dowker, J. S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (44)
[8]   EFFECTIVE ACTIONS WITH FIXED-POINTS [J].
DOWKER, JS .
PHYSICAL REVIEW D, 1994, 50 (10) :6369-6373
[9]   Mechanism of the generation of black hole entropy in Sakharov's induced gravity [J].
Frolov, VP ;
Fursaev, DV .
PHYSICAL REVIEW D, 1997, 56 (04) :2212-2225
[10]   Entanglement entropy in quantum gravity and the Plateau problem [J].
Fursaev, Dmitri V. .
PHYSICAL REVIEW D, 2008, 77 (12)