Conversions and interactions of the nonlinear waves in a generalized higher-order nonlinear Schrodinger equation

被引:4
作者
Cao, Bo [1 ]
Zhang, Huan [1 ]
机构
[1] Ningbo Polytech, Ningbo 315800, Zhejiang, Peoples R China
来源
OPTIK | 2018年 / 158卷
关键词
Breather-to-soliton dynamics; Antidark soliton; Multi-peak soliton; Periodic wave; ERBIUM-DOPED FIBER; SOLITON-SOLUTIONS; OPTICAL SOLITONS; MODULATION INSTABILITY; TUNGSTEN DISULFIDE; SYSTEM; DISPERSION; DARK; BREATHERS; BRIGHT;
D O I
10.1016/j.ijleo.2017.11.195
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we investigate a generalized higher-order nonlinear Schrodinger (NLS) equation with two free parameters, including the third-order and fourth-order dispersion with matching higher-order nonlinear effects. The results show that the breather solution can be converted into some types of localized and periodic waves under specified parameter conditions. Coupled with rich graphical examples, the coexistence and interaction of different nonlinear structures are displayed. Further, we demonstrate the explicit relation on the parallel propagation of the second-order breather solution. (C) 2017 Elsevier GmbH. All rights reseived.
引用
收藏
页码:112 / 117
页数:6
相关论文
共 33 条
[1]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[2]   Higher-order integrable evolution equation and its soliton solutions [J].
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2014, 378 (04) :358-361
[3]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[4]   Moving breathers and breather-to-soliton conversions for the Hirota equation [J].
Chowdury, A. ;
Ankiewicz, A. ;
Akhmediev, N. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2180)
[5]   Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrodinger hierarchy [J].
Chowdury, A. ;
Kedziora, D. J. ;
Ankiewicz, A. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2015, 91 (03)
[6]   High-Order Solutions and Generalized Darboux Transformations of Derivative Nonlinear Schrodinger Equations [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
STUDIES IN APPLIED MATHEMATICS, 2013, 130 (04) :317-344
[7]   A higher-order coupled nonlinear Schrodinger system: solitons, breathers, and rogue wave solutions [J].
Guo, Rui ;
Zhao, Hui-Hui ;
Wang, Yuan .
NONLINEAR DYNAMICS, 2016, 83 (04) :2475-2484
[8]   Breathers and localized solitons for the Hirota-Maxwell-Bloch system on constant backgrounds in erbium doped fibers [J].
Guo, Rui ;
Hao, Hui-Qin .
ANNALS OF PHYSICS, 2014, 344 :10-16
[9]   Dynamic behaviors of the breather solutions for the AB system in fluid mechanics [J].
Guo, Rui ;
Hao, Hui-Qin ;
Zhang, Ling-Ling .
NONLINEAR DYNAMICS, 2013, 74 (03) :701-709
[10]   Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrodinger equation [J].
Hao, Hui-Qin ;
Guo, Rui ;
Zhang, Jian-Wen .
NONLINEAR DYNAMICS, 2017, 88 (03) :1615-1622