Robust Estimation of Nonrigid Transformation for Point Set Registration

被引:147
作者
Ma, Jiayi [1 ,2 ]
Zhao, Ji [3 ]
Tian, Jinwen [1 ]
Tu, Zhuowen [4 ]
Yuille, Alan L. [2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
[3] CMU, Inst Robot, Pittsburgh, PA USA
[4] Univ Calif Los Angeles, Lab Neuro Imaging, Los Angeles, CA 90024 USA
来源
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2013年
基金
美国国家科学基金会;
关键词
OBJECT RECOGNITION; ALGORITHM;
D O I
10.1109/CVPR.2013.279
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new point matching algorithm for robust nonrigid registration. The method iteratively recovers the point correspondence and estimates the transformation between two point sets. In the first step of the iteration, feature descriptors such as shape context are used to establish rough correspondence. In the second step, we estimate the transformation using a robust estimator called L2E. This is the main novelty of our approach and it enables us to deal with the noise and outliers which arise in the correspondence step. The transformation is specified in a functional space, more specifically a reproducing kernel Hilbert space. We apply our method to nonrigid sparse image feature correspondence on 2D images and 3D surfaces. Our results quantitatively show that our approach outperforms state-of-the-art methods, particularly when there are a large number of outliers. Moreover, our method of robustly estimating transformations from correspondences is general and has many other applications.
引用
收藏
页码:2147 / 2154
页数:8
相关论文
共 27 条
[1]  
[Anonymous], ADV LEARNING THEORY
[2]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[3]   Robust and efficient estimation by minimising a density power divergence [J].
Basu, A ;
Harris, IR ;
Hjort, NL ;
Jones, MC .
BIOMETRIKA, 1998, 85 (03) :549-559
[4]   Shape matching and object recognition using shape contexts [J].
Belongie, S ;
Malik, J ;
Puzicha, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (04) :509-522
[5]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[6]   A SURVEY OF IMAGE REGISTRATION TECHNIQUES [J].
BROWN, LG .
COMPUTING SURVEYS, 1992, 24 (04) :325-376
[7]   A new point matching algorithm for non-rigid registration [J].
Chui, HL ;
Rangarajan, A .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (2-3) :114-141
[8]   Robust registration of 2D and 3D point sets [J].
Fitzgibbon, AW .
IMAGE AND VISION COMPUTING, 2003, 21 (13-14) :1145-1153
[9]  
Huber P., 2011, ROBUST STAT
[10]   Robust Point Set Registration Using Gaussian Mixture Models [J].
Jian, Bing ;
Vemuri, Baba C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1633-1645