Neural Network-augmented Kalman Filtering for Robust Online Speech Dereverberation in Noisy Reverberant Environments

被引:1
作者
Lemercier, Jean-Marie [1 ]
Thiemann, Joachim [2 ]
Koning, Raphael [2 ]
Gerkmann, Timo [1 ]
机构
[1] Univ Hamburg, Signal Proc SP, Hamburg, Germany
[2] Adv Bion, Hannover, Germany
来源
INTERSPEECH 2022 | 2022年
关键词
dereverberation; kalman filtering; adaptive processing; neural network; end-to-end training; MULTICHANNEL; SEPARATION; CANCELLATION; REFLECTIONS;
D O I
10.21437/Interspeech.2022-11337
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a neural network-augmented algorithm for noise-robust online dereverberation with a Kalman filtering variant of the weighted prediction error (WPE) method is proposed. The filter stochastic variations are predicted by a deep neural network (DNN) trained end-to-end using the filter residual error and signal characteristics. The presented framework allows for robust dereverberation on a single-channel noisy reverberant dataset similar to WHAMR!. The Kalman filtering WPE introduces distortions in the enhanced signal when predicting the filter variations from the residual error only, if the target speech power spectral density is not perfectly known and the observation is noisy. The proposed approach avoids these distortions by correcting the filter variations estimation in a data-driven way, increasing the robustness of the method to noisy scenarios. Furthermore, it yields a strong dereverberation and denoising performance compared to a DNN-supported recursive least squares variant of WPE, especially for highly noisy inputs.
引用
收藏
页码:226 / 230
页数:5
相关论文
共 35 条
[1]  
Anderson B. D. O., 1979, OPTIMAL FILTERING, P129
[2]   On the importance of early reflections for speech in rooms [J].
Bradley, JS ;
Sato, H ;
Picard, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 113 (06) :3233-3244
[3]   LOW COMPLEXITY ONLINE CONVOLUTIONAL BEAMFORMING [J].
Braun, Sebastian ;
Tashev, Ivan .
2021 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2021, :136-140
[4]   Linear Prediction-Based Online Dereverberation and Noise Reduction Using Alternating Kalman Filters [J].
Braun, Sebastian ;
Habets, Emanuel A. P. .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (06) :1115-1125
[5]   Online Dereverberation for Dynamic Scenarios Using a Kalman Filter With an Autoregressive Model [J].
Braun, Sebastian ;
Habets, Emanuel A. P. .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (12) :1741-1745
[6]   Adaptive Multichannel Dereverberation for Automatic Speech Recognition [J].
Caroselli, Joe ;
Shafran, Izhak ;
Narayanan, Arun ;
Rose, Richard .
18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, :3877-3881
[7]   Combination of MVDR beamforming and single-channel spectral processing for enhancing noisy and reverberant speech [J].
Cauchi, Benjamin ;
Kodrasi, Ina ;
Rehr, Robert ;
Gerlach, Stephan ;
Jukic, Ante ;
Gerkmann, Timo ;
Doclo, Simon ;
Goetze, Stefan .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2015,
[8]   Integrated Sidelobe Cancellation and Linear Prediction Kalman Filter for Joint Multi-Microphone Speech Dereverberation, Interfering Speech Cancellation, and Noise Reduction [J].
Dietzen, Thomas ;
Doclo, Simon ;
Moonen, Marc ;
van Waterschoot, Toon .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 :740-754
[9]  
Dietzen T, 2017, IEEE WORK APPL SIG, P284, DOI [10.1109/waspaa.2017.8170040, 10.1109/WASPAA.2017.8170040]
[10]  
Doclo S, 2005, SIG COM TEC, P199, DOI 10.1007/3-540-27489-8_9