Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA

被引:348
作者
Edlund, S [1 ]
Landström, M [1 ]
Heldin, CH [1 ]
Aspenström, P [1 ]
机构
[1] Ludwig Inst Canc Res, Ctr Biomed, S-75124 Uppsala, Sweden
关键词
D O I
10.1091/mbc.01-08-0398
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transforming growth factor-beta (TGF-beta) is a potent regulator of cell growth and differentiation in many cell types. The Smad signaling pathway constitutes a main signal transduction route downstream of TGF-beta receptors. We studied TGF-beta-induced rearrangements of the actin filament system and found that TGF-beta1 treatment of PC-3U human prostate carcinoma cells resulted in a rapid formation of lamellipodia. Interestingly, this response was shown to be independent of the Smad signaling pathway; instead, it required the activity of the Rho GTPases Cdc42 and RhoA, because ectopic expression of dominant negative mutant Cdc42 and RhoA abrogated the response. Long-term stimulation with TGF-beta1 resulted in an assembly of stress fibers; this response required both signaling via Cdc42 and RhoA, and Smad proteins. A known downstream effector of Cdc42 is P38(MAPK); treatment of the cells with the p38(MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(pyridyl)1H-imidazole (SB203580), as well as ectopic expression of a kinase-inactive p38(MAPK), abrogated the TGF-beta-induced actin reorganization. Moreover, treatment of cells with the inhibitors of the RhoA target-protein Rho-associated coiled-coil kinase (+)-R-trans-4-(aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide (Y-27632) and 1-5(-isoquinolinesulfonyl)homopiperazine (HA-1077), as well as ectopic expression of kinase-inactive Rho coiled-coil kinase-1, abrogated the TGF-beta1-induced formation of stress fibers. Collectively, these data indicate that TGF-beta-induced membrane ruffles occur via Rho GTPase-dependent pathways, whereas long-term effects require cooperation between Smad and Rho GTPase signaling pathways.
引用
收藏
页码:902 / 914
页数:13
相关论文
共 50 条
[1]  
[Anonymous], 1998, Biochim. Biophys. Acta
[2]  
[Anonymous], ENV SCI POLLUT RES
[3]   Two GTPases, cdc42 and rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome [J].
Aspenstrom, P ;
Lindberg, U ;
Hall, A .
CURRENT BIOLOGY, 1996, 6 (01) :70-75
[4]   Smads as transcriptional co-modulators [J].
Attisano, L ;
Wrana, JL .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (02) :235-243
[5]   EFFECTS OF TRANSFORMING GROWTH FACTOR-BETA-1 ON THE EXTRACELLULAR-MATRIX AND CYTOSKELETON OF CULTURED ASTROCYTES [J].
BAGHDASSARIAN, D ;
TORUDELBAUFFE, D ;
GAVARET, JM ;
PIERRE, M .
GLIA, 1993, 7 (03) :193-202
[6]   Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism [J].
Bhowmick, NA ;
Ghiassi, M ;
Bakin, A ;
Aakre, M ;
Lundquist, CA ;
Engel, ME ;
Arteaga, CL ;
Moses, HL .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) :27-36
[7]  
Boland S, 1996, J CELL SCI, V109, P2207
[8]   RAPID INDUCTION OF MORPHOLOGICAL-CHANGES IN HUMAN CARCINOMA-CELLS A-431 BY EPIDERMAL GROWTH-FACTOR [J].
CHINKERS, M ;
MCKANNA, JA ;
COHEN, S .
JOURNAL OF CELL BIOLOGY, 1979, 83 (01) :260-265
[9]   Microtubule binding to Smads may regulate TGFβ activity [J].
Dong, CM ;
Li, ZR ;
Alvarez, R ;
Feng, XH ;
Goldschmidt-Clermont, PJ .
MOLECULAR CELL, 2000, 5 (01) :27-34
[10]   Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription [J].
Engel, ME ;
McDonnell, MA ;
Law, BK ;
Moses, HL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (52) :37413-37420