Tuning the optical properties of (TiO2)2 via the electric field

被引:11
作者
Zhang, Xiangyun [1 ,4 ]
Liu, Yuzhu [1 ]
Ma, Xinyu [1 ]
Jin, Feng [2 ]
Abulimiti, Bumaliya [3 ]
Xiang, Mei [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Optoelect Detect Atmosphere & Oce, Nanjing 210044, Peoples R China
[2] Baylor Coll Med, Adv Technol Core, Houston, TX 77030 USA
[3] Xinjiang Normal Univ, Coll Phys & Elect Engn, Urumqi 830054, Peoples R China
[4] Friedrich Schiller Univ Jena, Abbe Sch Photon, D-07745 Jena, Germany
来源
OPTIK | 2020年 / 221卷
基金
中国国家自然科学基金;
关键词
TiO2; cluster; Electric field; IR; UV-Vis; Nonlinear optical properties; TIO2; SPECTROSCOPY; UV;
D O I
10.1016/j.ijleo.2020.165395
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
TiO2 nanomaterials have extreme applications in photocatalysis and photocell. The study of the properties of TiO2 clusters can provide meaningful references for further understanding of TiO2 nanomaterials. In this paper, tuning the optical properties of (TiO2)(2) cluster was realized by applying an external electric field. The effect of the electric field on the IR spectra, energy gap, linear optical coefficient alpha and the second-order nonlinear optical coefficient beta of (TiO2)(2) cluster were concluded by density functional theory(DFT) method at B3LYP/6-311+G(d, p) basis set. The frequency shift and appearance of a new peak will happen in IR spectra with the fields. UV-vis absorption spectra were investigated using time-dependent density functional theory(TD-DFT) method. The absorption peak of the UV-vis absorption spectra redshift with the electric field increasing and a new absorption peak occurs in visible light range. Besides, the energy gap of (TiO2)(2) cluster begins to decrease with the increase of the field. And the linear optical coefficient alpha and the second-order nonlinear optical coefficient beta are found to increase. Especially, beta rises particularly fast.
引用
收藏
页数:8
相关论文
共 22 条
[1]   Structural and electronic properties of (TiO2)10 clusters with impurities: A density functional theory investigation [J].
Aguilera-del-Toro, R. H. ;
Aguilera-Granja, F. ;
Vogel, E. E. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 135
[2]   Structure and Stability of (TiO2)n, (SiO2)n, and Mixed TimSin-mO2n [n=2-5, m=1 to (n-1)] Clusters [J].
Bandyopadhyay, Indrajit ;
Aikens, Christine M. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (05) :868-879
[3]   Prediction, and physic-chemical properties of (TiO2)n n=15-20 clusters and their possible catalytic application: A DFT study [J].
Bautista Hernandez, A. ;
Ibarra Hernandez, W. ;
Peldez Cid, A. A. ;
Camacho Garcia, J. H. ;
Salazar Villanueva, M. .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 162 :228-235
[4]  
Bergstrom R, 1996, INT J QUANTUM CHEM, V59, P427, DOI 10.1002/(SICI)1097-461X(1996)59:6<427::AID-QUA1>3.0.CO
[5]  
2-#
[6]   Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production [J].
Cho, In Sun ;
Chen, Zhebo ;
Forman, Arnold J. ;
Kim, Dong Rip ;
Rao, Pratap M. ;
Jaramillo, Thomas F. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (11) :4978-4984
[7]   Fabrication of TiO2 nanostructures on TiO2/Au/quartz device for solar cell applications [J].
Dariani, R. S. ;
Easy, E. .
OPTIK, 2015, 126 (22) :3407-3410
[8]   The ratio law of the structure evolution and stability for TinOm (n=3-18, m=1-2n) clusters [J].
Du, Hongbo ;
Jia, Yu ;
Niu, Chunyao ;
Hu, Kaige ;
Li, Haifeng ;
Yu, Lingmin .
CHEMICAL PHYSICS LETTERS, 2019, 731
[9]  
Frisch M. J., 2019, Gaussian. Inc Wallingford CT
[10]   REFINEMENT OF STRUCTURE OF ANATASE AT SEVERAL TEMPERATURES [J].
HORN, M ;
SCHWERDTFEGER, CF ;
MEAGHER, EP .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1972, 136 (3-4) :273-281