Fractional diffusion equation for a power-law-truncated Levy process

被引:96
作者
Sokolov, IM
Chechkin, A
Klafter, J [1 ]
机构
[1] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[3] NSC KIPT, Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
truncated Levy flights; fractional kinetics; distributed-order diffusion equation;
D O I
10.1016/j.physa.2003.12.044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Truncated Levy flights are stochastic processes which display a crossover from a heavy-tailed Levy behavior to a faster decaying probability distribution function (pdf). Putting less weight on long flights overcomes the divergence of the Levy distribution second moment. We introduce a fractional generalization of the diffusion equation, whose solution defines a process in which a Levy flight of exponent alpha is truncated by a power-law of exponent 5-alpha. A closed form for the characteristic function of the process is derived. The pdf of the displacement slowly converges to a Gaussian in its central part showing however a power-law far tail. Possible applications are discussed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 251
页数:7
相关论文
共 23 条
[1]   Bifurcation, bimodality, and finite variance in confined Levy flights [J].
Chechkin, AV ;
Klafter, J ;
Gonchar, VY ;
Metzler, R ;
Tanatarov, LV .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[2]   Fractional Fokker-Planck equation for ultraslow kinetics [J].
Chechkin, AV ;
Klafter, J ;
Sokolov, IM .
EUROPHYSICS LETTERS, 2003, 63 (03) :326-332
[3]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[4]   SUBORDINATED STOCHASTIC-PROCESS MODEL WITH FINITE VARIANCE FOR SPECULATIVE PRICES [J].
CLARK, PK .
ECONOMETRICA, 1973, 41 (01) :135-155
[5]   Truncated Levey laws and 2D turbulence [J].
Dubrulle, B ;
Laval, JP .
EUROPEAN PHYSICAL JOURNAL B, 1998, 4 (02) :143-146
[6]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[7]   Evidence of Levy stable process in tokamak edge turbulence [J].
Jha, R ;
Kaw, PK ;
Kulkarni, DR ;
Parikh, JC .
PHYSICS OF PLASMAS, 2003, 10 (03) :699-704
[8]   ANALYTIC APPROACH TO THE PROBLEM OF CONVERGENCE OF TRUNCATED LEVY FLIGHTS TOWARDS THE GAUSSIAN STOCHASTIC-PROCESS [J].
KOPONEN, I .
PHYSICAL REVIEW E, 1995, 52 (01) :1197-1199
[9]  
Levandowsky M, 1997, ACTA PROTOZOOL, V36, P237
[10]   STOCHASTIC-PROCESS WITH ULTRASLOW CONVERGENCE TO A GAUSSIAN - THE TRUNCATED LEVY FLIGHT [J].
MANTEGNA, RN ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1994, 73 (22) :2946-2949