A convolutional neural network for fully automated blood SUV determination to facilitate SUR computation in oncological FDG-PET

被引:6
作者
Nikulin, Pavel [1 ]
Hofheinz, Frank [1 ]
Maus, Jens [1 ]
Li, Yimin [2 ]
Buetof, Rebecca [3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Lange, Catharina [11 ,12 ,13 ,14 ]
Furth, Christian [11 ,12 ,13 ,14 ]
Zschaeck, Sebastian [12 ,13 ,14 ,15 ]
Kreissl, Michael C. [16 ]
Kotzerke, Joerg [17 ]
van den Hoff, Joerg [1 ,17 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Radiopharmaceut Canc Res, PET Ctr, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Xiamen Univ, Affiliated Hosp 1, Xiamen Canc Ctr, Dept Radiat Oncol, Xiamen, Peoples R China
[3] Tech Univ Dresden, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[4] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[5] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[6] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[7] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[8] German Canc Res Ctr, Heidelberg, Germany
[9] Tech Univ Dresden, Fac Med, Dresden, Germany
[10] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Assoc, Dresden, Germany
[11] Charite Univ Med Berlin, Dept Nucl Med, Berlin, Germany
[12] Free Univ Berlin, Berlin, Germany
[13] Humboldt Univ, Berlin, Germany
[14] Berlin Inst Hlth, Berlin, Germany
[15] Charite Univ Med Berlin, Dept Radiat Oncol, Berlin, Germany
[16] Otto von Guericke Univ, Univ Hosp Magdeburg, Dept Radiol & Nucl Med, Div Nucl Med, Magdeburg, Germany
[17] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dept Nucl Med, Dresden, Germany
基金
美国国家卫生研究院;
关键词
FDG-PET; Standardized uptake value; SUV; Standardized uptake ratio; SUR; Convolutional neural network; UPTAKE RATIO SUR; STANDARD UPTAKE; SEGMENTATION; VARIABILITY; AORTA;
D O I
10.1007/s00259-020-04991-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The standardized uptake value (SUV) is widely used for quantitative evaluation in oncological FDG-PET but has well-known shortcomings as a measure of the tumor's glucose consumption. The standard uptake ratio (SUR) of tumor SUV and arterial blood SUV (BSUV) possesses an increased prognostic value but requires image-based BSUV determination, typically in the aortic lumen. However, accurate manual ROI delineation requires care and imposes an additional workload, which makes the SUR approach less attractive for clinical routine. The goal of the present work was the development of a fully automated method for BSUV determination in whole-body PET/CT. Methods Automatic delineation of the aortic lumen was performed with a convolutional neural network (CNN), using the U-Net architecture. A total of 946 FDG PET/CT scans from several sites were used for network training (N= 366) and testing (N= 580). For all scans, the aortic lumen was manually delineated, avoiding areas affected by motion-induced attenuation artifacts or potential spillover from adjacent FDG-avid regions. Performance of the network was assessed using the fractional deviations of automatically and manually derived BSUVs in the test data. Results The trained U-Net yields BSUVs in close agreement with those obtained from manual delineation. Comparison of manually and automatically derived BSUVs shows excellent concordance: the mean relative BSUV difference was (mean +/- SD) = (- 0.5 +/- 2.2)% with a 95% confidence interval of [- 5.1,3.8]%and a total range of [- 10.0, 12.0]%. For four test cases, the derived ROIs were unusable (< 1 ml). Conclusion CNNs are capable of performing robust automatic image-based BSUV determination. Integrating automatic BSUV derivation into PET data processing workflows will significantly facilitate SUR computation without increasing the workload in the clinical setting.
引用
收藏
页码:995 / 1004
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 2016, PROC 4 INT C LEARN R
[2]   Reference Range for Intrapatient Variability in Blood-Pool and Liver SUV for 18F-FDG PET [J].
Boktor, Raef R. ;
Walker, Gregory ;
Stacey, Roderick ;
Gledhill, Samuel ;
Pitman, Alexander G. .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (05) :677-682
[3]   Prognostic Value of Standardized Uptake Ratio in Patients with Trimodality Treatment of Locally Advanced Esophageal Carcinoma [J].
Buetof, Rebecca ;
Hofheinz, Frank ;
Zoephel, Klaus ;
Schmollack, Julia ;
Jentsch, Christina ;
Zschaeck, Sebastian ;
Kotzerke, Joerg ;
van den Hoff, Joerg ;
Baumann, Michael .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (02) :192-198
[4]   Prognostic Value of Pretherapeutic Tumor-to-Blood Standardized Uptake Ratio in Patients with Esophageal Carcinoma [J].
Buetof, Rebecca ;
Hofheinz, Frank ;
Zoephel, Klaus ;
Stadelmann, Tobias ;
Schmollack, Julia ;
Jentsch, Christina ;
Loeck, Steffen ;
Kotzerke, Joerg ;
Baumann, Michael ;
van den Hoff, Joerg .
JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (08) :1150-1156
[5]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[6]  
HAMBERG LM, 1994, J NUCL MED, V35, P1308
[7]   Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges [J].
Hesamian, Mohammad Hesam ;
Jia, Wenjing ;
He, Xiangjian ;
Kennedy, Paul .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :582-596
[8]   Confirmation of the prognostic value of pretherapeutic tumor SUR and MTV in patients with esophageal squamous cell carcinoma [J].
Hofheinz, Frank ;
Li, Yimin ;
Steffen, Ingo G. ;
Lin, Qin ;
Chen Lili ;
Wu Hua ;
van den Hoff, Joerg ;
Zschaeck, Sebastian .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (07) :1485-1494
[9]   Interobserver variability of image-derived arterial blood SUV in whole-body FDG PET [J].
Hofheinz, Frank ;
Maus, Jens ;
Zschaeck, Sebastian ;
Rogasch, Julian ;
Schramm, Georg ;
Oehme, Liane ;
Apostolova, Ivayla ;
Kotzerke, Joerg ;
van den Hoff, Joerg .
EJNMMI RESEARCH, 2019, 9 (1)
[10]   Test-Retest Variability in Lesion SUV and Lesion SUR in 18F-FDG PET: An Analysis of Data from Two Prospective Multicenter Trials [J].
Hofheinz, Frank ;
Apostolova, Ivayla ;
Oehme, Liane ;
Kotzerke, Joerg ;
van den Hoff, Joerg .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (11) :1770-1775