The effect of B-site Y substitution on cubic phase stabilization in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ

被引:12
|
作者
Meffert, Matthias [1 ]
Unger, Lana-Simone [2 ]
Stoermer, Heike [1 ]
Sigloch, Fabian [2 ]
Wagner, Stefan F. [2 ]
Ivers-Tiffee, Ellen [2 ]
Gerthsen, Dagmar [1 ]
机构
[1] KIT, Lab Elektronenmikroskopie, Karlsruhe, Germany
[2] KIT, Inst Angew Mat Werkstoffe Elektrotech IAM WET, Karlsruhe, Germany
关键词
BSCF; energy dispersive X-ray spectroscopy; oxygen transport membrane; transmission electron microscopy; Y-doping; BA0.5SR0.5CO0.8FE0.2O3-DELTA PEROVSKITE; ELECTRICAL-PROPERTIES; OXYGEN PERMEABILITY; BSCF PEROVSKITE; GRAIN-SIZE; COBALT; STABILITY; PERFORMANCE; DECOMPOSITION; SEPARATION;
D O I
10.1111/jace.16343
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The cubic phase mixed ionic-electronic conductor (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-delta (BSCF) is well-known for its excellent oxygen ion conductivity and high catalytic activity. However, formation of secondary phases impedes oxygen ion transport and consequentially a widespread application of BSCF as oxygen transport membrane. B-cation substitution by 1, 3 and 10 at.% Y was employed in this work for stabilization of the cubic BSCF phase. Secondary phase formation was quantified on bulk and powder samples exposed to temperatures between 640 and 1100 degrees C with annealing time up to 44 days. The phase composition, cation valence states, and chemical composition of all samples were analyzed by high-resolution analytical electron microscopic techniques. Y doping effectively suppresses the formation of Ban+1ConO3n+3(Co8O8) (n >= 2) and CoxOy phases which would otherwise act as nucleation centers for the highly undesirable hexagonal BSCF phase. This work validates for 10 at.% Y cation substitution perfect stabilization of the cubic BSCF phase at temperatures >= 800 degrees C, while a negligible small volume fraction of the hexagonal BSCF phase was found at lower temperatures. A newly developed model describes the effect of Y doping on the formation of secondary phases and their effective suppression with increasing Y concentration.
引用
收藏
页码:4929 / 4942
页数:14
相关论文
共 50 条
  • [21] Synthesis and characterization of Ba0.5Sr0.5Co0.8Fe0.2O3-σ
    Wang Qibao
    Yuan Yan
    Han Minfang
    Zhu Peiyu
    RARE METALS, 2009, 28 (01) : 39 - 42
  • [22] Synthesis and characterization of Ba0.5Sr0.5Co0.8Fe0.2O3-σ
    WANG Qibao
    RareMetals, 2009, 28 (01) : 39 - 42
  • [23] Preparation of (Ba,Sr)0.5Sm0.5Co0.8Fe0.2O3-δ and (Ba,Sr)0.5Nd0.5C0.8Fe0.2O3-δ cathodes for IT-SOFCs
    Aquino, Flavia M.
    Marques, Fernando M. B.
    Melo, Dulce M. A.
    Macedo, Daniel A.
    Yaremchenko, Aleksey A.
    Figueiredo, Filipe M.
    ELECTROCERAMICS VI, 2014, 975 : 137 - +
  • [24] Synthesis and characterization of Ba0.5Sr0.5Co0.8Fe0.2O3−σ
    Qibao Wang
    Yan Yuan
    Minfang Han
    Peiyu Zhu
    Rare Metals, 2009, 28 : 39 - 42
  • [25] Properties and performance of A-site deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-δ for oxygen
    Ge, Lei
    Zhou, Wei
    Ran, Ran
    Liu, Shaornin
    Shao, Zongping
    Jin, Wanqin
    Xu, Nanping
    JOURNAL OF MEMBRANE SCIENCE, 2007, 306 (1-2) : 318 - 328
  • [26] Transitions of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.58Sr0.4Co0.2Fe0.8O3-δ
    Araki, Wakako
    Arai, Yoshio
    Malzbender, Juergen
    MATERIALS LETTERS, 2014, 132 : 295 - 297
  • [27] Determination of the crystal structure and charge density of (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33 by Rietveld refinement and maximum entropy method analysis
    Itoh, Takanori
    Nishida, Yuuki
    Tomita, Aya
    Fujie, Yoshinori
    Kitamura, Naoto
    Idemoto, Yasushi
    Osaka, Keiichi
    Hirosawa, Ichiro
    Igawa, Naoki
    SOLID STATE COMMUNICATIONS, 2009, 149 (1-2) : 41 - 44
  • [28] Synthesis and characterization of Ba0.5Sr0.5(CO0.8Fe0.2)1-xZrx O3-δ (BSCF) Nanoceramic Cathode Powders by Sol-Gel Process for Solid Oxide Fuel Cell
    Sharma, D. Rama Krishna
    Rao, P. Vijay Bhaskar
    Reddy, M. Narsimha
    Srikanth, D.
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (09) : 4442 - 4450
  • [29] Synthesis and characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Ried, P.
    Holtappels, P.
    Wichser, A.
    Ulrich, A.
    Graule, T.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (10) : B1029 - B1035
  • [30] Stability aspects of porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Lipinska-Chwalek, M.
    Schulze-Kueppers, F.
    Malzbender, J.
    CERAMICS INTERNATIONAL, 2014, 40 (05) : 7395 - 7399