Nanotechnological strategies for therapeutic targeting of tumor vasculature

被引:2
作者
Ding, Yanping [1 ]
Li, Suping [1 ]
Nie, Guangjun [1 ]
机构
[1] Natl Ctr Nanosci & Technol China, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China
关键词
nanoparticle; neovascularization; therapy; tumor; vascular targeting; ENDOTHELIAL-CELLS; TISSUE FACTOR; DISRUPTING AGENTS; DELIVERY-SYSTEM; NANOPARTICLES; ANGIOGENESIS; CANCER; BLOOD; ANTIANGIOGENESIS; NANOMEDICINE;
D O I
10.2217/NNM.13.106
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Neovascularization plays fundamental roles in tumor growth and metastasis. Tumor blood vessels are highly accessible and express various angiogenic markers that are either not present or are expressed at low levels in normal vessels, thereby serving as favorable targets for cancer therapy. Cancer nanotechnology, as an integrated platform, offers great opportunities for optimizing drug efficacy and pharmacokinetics while reducing side effects. Nanoparticles with tunable size, shape and surface modification have been exploited to achieve effective tumor vascular targeting. Here, we briefly introduce the signatures of tumor neovascularization and the review investigations on vascular-targeted anti-tumor nanomedicines. We also provide our perspectives on the promising fields of combination therapy and theranostic nanomedicines, as well as the challenges of nanotechnology-based cancer therapy. Furthermore, introducing new functionality would significantly consolidate the current development of nanomaterials based on tumor vasculature targeting.
引用
收藏
页码:1209 / 1222
页数:14
相关论文
共 83 条
[1]   Nanoparticle-induced vascular blockade in human prostate cancer [J].
Agemy, Lilach ;
Sugahara, Kazuki N. ;
Kotamraju, Venkata Ramana ;
Gujraty, Kunal ;
Girard, Olivier M. ;
Kono, Yuko ;
Mattrey, Robert F. ;
Park, Ji-Ho ;
Sailor, Michael J. ;
Jimenez, Ana I. ;
Cativiela, Carlos ;
Zanuy, David ;
Sayago, Francisco J. ;
Aleman, Carlos ;
Nussinov, Ruth ;
Ruoslahti, Erkki .
BLOOD, 2010, 116 (15) :2847-2856
[2]   Integrins in angiogenesis and lymphangiogenesis [J].
Avraamides, Christie J. ;
Garmy-Susini, Barbara ;
Varner, Judith A. .
NATURE REVIEWS CANCER, 2008, 8 (08) :604-617
[3]   DMXAA: An antivascular agent with multiple host responses [J].
Baguley, BC ;
Ching, LM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2002, 54 (05) :1503-1511
[4]   Liposomal glucocorticoids as tumor-targeted anti-angiogenic nanomedicine in B16 melanoma-bearing mice [J].
Banciu, Manuela ;
Metselaar, Josbert M. ;
Schiffelers, Raymond M. ;
Storm, Gert .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2008, 111 (1-2) :101-110
[5]   Nanotechnology-mediated targeting of tumor angiogenesis [J].
Banerjee, Deboshri ;
Harfouche, Rania ;
Sengupta, Shiladitya .
VASCULAR CELL, 2011, 3
[6]   Tumorigenesis and the angiogenic switch [J].
Bergers, G ;
Benjamin, LE .
NATURE REVIEWS CANCER, 2003, 3 (06) :401-410
[7]   Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience [J].
Bieker, Ralf ;
Kessler, Torsten ;
Schwoeppe, Christian ;
Padro, Teresa ;
Persigehl, Thorsten ;
Bremer, Christoph ;
Dreischalueck, Johannes ;
Kolkmeyer, Astrid ;
Heindel, Walter ;
Mesters, Rolf M. ;
Berdel, Wolfgang E. .
BLOOD, 2009, 113 (20) :5019-5027
[8]   A COMPARISON OF TUMOR AND NORMAL TISSUE MICROVASCULAR HEMATOCRITS AND RED-CELL FLUXES IN A RAT WINDOW CHAMBER MODEL [J].
BRIZEL, DM ;
KLITZMAN, B ;
COOK, JM ;
EDWARDS, J ;
ROSNER, G ;
DEWHIRST, MW .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1993, 25 (02) :269-276
[9]   Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells [J].
Calderon, Andres J. ;
Muzykantov, Vladimir ;
Muro, Silvia ;
Eckmann, David M. .
BIORHEOLOGY, 2009, 46 (04) :323-341
[10]   Shape Induced Inhibition of Phagocytosis of Polymer Particles [J].
Champion, Julie A. ;
Mitragotri, Samir .
PHARMACEUTICAL RESEARCH, 2009, 26 (01) :244-249