Combinatorial realizability models of type theory

被引:6
作者
Hofstra, Pieter [1 ]
Warren, Michael A. [2 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Realizability; Gluing; Logical relations; Homotopy type theory; Martin-Lof type theory; Groupoid semantics;
D O I
10.1016/j.apal.2013.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new model construction for Martin-Lof intensional type theory, which is sound and complete for the 1-truncated version of the theory. The model formally combines, by gluing along the functor from the category of contexts to the category of groupoids, the syntactic model with a notion of realizability. As our main application, we use the model to analyse the syntactic groupoid associated to the type theory generated by a graph G, showing that it has the same homotopy type as the free groupoid generated by G. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:957 / 988
页数:32
相关论文
共 8 条
  • [1] Awodey S., 2012, EPISTEMOLOGY VERSUS, P183, DOI [10.1007/978-94-007-4435-6_9., DOI 10.1007/978-94-007-4435-6_9, 10.1007/978-94-007-4435-69, DOI 10.1007/978-94-007-4435-69]
  • [2] Martin-Lof complexes
    Awodey, Steve
    Hofstra, Pieter
    Warren, Michael A.
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (10) : 928 - 956
  • [3] Dybjer P., 1996, LECT NOTES COMPUT SC, V1158
  • [4] The identity type weak factorisation system
    Gambino, Nicola
    Garner, Richard
    [J]. THEORETICAL COMPUTER SCIENCE, 2008, 409 (01) : 94 - 109
  • [5] Hofmann M., 1998, Twenty-five years of constructive type theory, Oxf. Logic Guides, V36, P83
  • [6] Hofmann Martin, 1997, Extensional Constructs in Intensional Type Theory, P13, DOI DOI 10.1007/978-1-4471-0963-1_2
  • [7] INTENSIONAL INTERPRETATIONS OF FUNCTIONALS OF FINITE TYPE I
    TAIT, WW
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1967, 32 (02) : 198 - &
  • [8] Voevodsky V., 2010, Univalent Foundations Project, grant proposal application