Optimisation of plant mediated synthesis of silver nanoparticles by common weed Plantago major and their antimicrobial properties

被引:17
作者
Kuunal, S. [1 ]
Visnapuu, M. [2 ,3 ]
Volubujeva, O. [1 ]
Soares Rosario, M. [4 ]
Rauwel, P. [5 ]
Rauwel, E. [1 ,5 ]
机构
[1] TalTech, Fac Engn, Akad Tee 15, EE-12618 Tallinn, Estonia
[2] Univ Tartu, Inst Phys, W Ostwaldi Str 1, EE-50411 Tartu, Estonia
[3] NICPB, EE-12618 Tallinn, Estonia
[4] Univ Aveiro, CICECO Aveiro Inst Mat, Aveiro, Portugal
[5] Estonian Univ Life Sci, Inst Technol, EE-51074 Tartu, Estonia
来源
5TH INTERNATIONAL CONFERENCE ON COMPETITIVE MATERIALS AND TECHNOLOGY PROCESSES | 2019年 / 613卷
关键词
BIOCIDAL PROPERTIES; GREEN SYNTHESIS; EXTRACT;
D O I
10.1088/1757-899X/613/1/012003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silver nanoparticles synthesized through plant-mediated synthesis have recently gained recognition in the field of biocidal coatings. However, the accurate control of the synthesis using plant extract appears difficult and tends to produce a silver chloride secondary phase. In this study, 2 different methods of synthesis using the same plant extract of Plantago major have been investigated to evaluate their influence on the production of AgCl. In both cases the silver nanoparticles have demonstrated efficient biocidal properties against micro-organisms.
引用
收藏
页数:8
相关论文
共 16 条
[1]  
[Anonymous], NANOMEDICINE NANOTEC
[2]   Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments [J].
Duran, Nelson ;
Nakazato, Gerson ;
Seabra, Amedea B. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (15) :6555-6570
[3]   Toxicity of CuO Nanoparticles to Yeast Saccharomyces cerevisiae BY4741 Wild-Type and Its Nine Isogenic Single-Gene Deletion Mutants [J].
Kasemets, Kaja ;
Suppi, Sandra ;
Kuennis-Beres, Kai ;
Kahru, Anne .
CHEMICAL RESEARCH IN TOXICOLOGY, 2013, 26 (03) :356-367
[4]   Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil [J].
Kumar, Ashavani ;
Vemula, Praveen Kumar ;
Ajayan, Pulickel M. ;
John, George .
NATURE MATERIALS, 2008, 7 (03) :236-241
[5]  
Kuunal S, 2018, ELSEVIER S T BOOKS, V14, P411, DOI [10.1016/B978-0-323-51254-1.00014-2, DOI 10.1016/B978-0-323-51254-1.00014-2]
[6]  
Küünal S, 2016, INT NANO LETT, V6, P191, DOI 10.1007/s40089-016-0186-7
[7]   RETRACTED: Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies (Retracted Article) [J].
Pasupuleti, Visweswara Rao ;
Prasad, T. N. V. K. V. ;
Shiekh, Rayees Ahmad ;
Balam, Satheesh Krishna ;
Narasimhulu, Ganapathi ;
Reddy, Cirandur Suresh ;
Ab Rahman, Ismail ;
Gan, Siew Hua .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 :3355-3364
[8]   Silver nanoparticles as a new generation of antimicrobials [J].
Rai, Mahendra ;
Yadav, Alka ;
Gade, Aniket .
BIOTECHNOLOGY ADVANCES, 2009, 27 (01) :76-83
[9]   The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties [J].
Ramamurthy, Ch. ;
Padma, M. ;
Samadanam, I. Daisy Mariya ;
Mareeswaran, R. ;
Suyavaran, A. ;
Kumar, M. Suresh ;
Premkumar, K. ;
Thirunavukkarasu, C. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 102 :808-815
[10]   Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential [J].
Rastogi, Lori ;
Arunachalam, J. .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 129 (1-2) :558-563