Three positive solutions for a generalized Laplacian boundary value problem with a parameter

被引:19
作者
Bai, Dingyong [2 ,3 ]
Chen, Yuming [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong Provi, Peoples R China
[3] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong Provi, Peoples R China
基金
高等学校博士学科点专项科研基金; 加拿大自然科学与工程研究理事会;
关键词
Generalized Laplacian boundary value problem; Leggett-Williams fixed point theorem; Positive solution; Symmetric solution; IMPULSIVE DIFFERENTIAL-EQUATIONS; MULTIPLICITY RESULT; SYSTEMS; EXISTENCE;
D O I
10.1016/j.amc.2012.10.100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Concerned is a generalized Laplacian boundary value problem with a positive parameter. First we apply the Leggett-Williams fixed point theorem to establish sufficient conditions on the existence of at least three positive solutions for the parameter belonging to an explicit interval. Then, under a little bit stronger assumptions, we show that there are at least three positive symmetric solutions for the parameter in an open interval. The obtained results are new even for Laplacian boundary value problems and they are illustrated with an example. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:4782 / 4788
页数:7
相关论文
共 31 条
[1]   A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem [J].
Agarwal, RP ;
O'Regan, D .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (02) :433-439
[2]  
Anderson D. R., 2004, ELECTRON J DIFFER EQ, V47, P12
[3]  
[Anonymous], 1999, DIFFER EQU DYN SYST
[4]  
Arrazola E., 1998, PROYECCIONES, V17, P189
[5]   Three symmetric positive solutions for a second-order boundary value problem [J].
Avery, RI ;
Henderson, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :1-7
[6]   Positive solutions and eigenvalue regions of two-delay singular systems with a twin parameter [J].
Bai, Dingyong ;
Xu, Yuantong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (11) :2547-2564
[7]   Nonlinear higher order boundary value problems with multiple positive solutions [J].
Baxley, JV ;
Houmand, CR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (02) :682-691
[8]   General Lidstone problems: Multiplicity and symmetry of solutions [J].
Davis, JM ;
Henderson, J ;
Wong, PJY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :527-548
[9]   Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem [J].
Graef, John R. ;
Kong, Lingju ;
Wang, Haiyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (05) :1185-1197
[10]  
Guo D., 1988, NONLINEAR PROBLEMS A