Intermittent stream flow forecasting and modelling with hybrid wavelet neuro-fuzzy model

被引:21
作者
Badrzadeh, Honey [1 ]
Sarukkalige, Ranjan [1 ]
Jayawardena, A. W. [2 ,3 ]
机构
[1] Curtin Univ, Dept Civil Engn, Kent St, Perth, WA, Australia
[2] Univ Hong Kong, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R China
[3] Nippon Koei Co Ltd, Res & Dev Ctr, Tsukuba, Ibaraki, Japan
来源
HYDROLOGY RESEARCH | 2018年 / 49卷 / 01期
关键词
discrete wavelet transform (DWT); forecasting; grid partitioning; neuro; fuzzy; stream flow; time series; HYDROLOGICAL TIME-SERIES; INFERENCE SYSTEM; NETWORKS; RUNOFF; IDENTIFICATION; CONJUNCTION; PREDICTION; TRANSFORMS; ANFIS;
D O I
10.2166/nh.2017.163
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
In this paper, an advanced stream flow forecasting model is developed by applying data-preprocessing techniques on adaptive neuro-fuzzy inference system (ANFIS). Wavelet multi-resolution analysis is coupled with an ANFIS model to develop a hybrid wavelet neuro-fuzzy (WNF) model. Different models with different input selection and structures are developed for daily, weekly and monthly stream flow forecasting in Railway Parade station on Ellen Brook River, Western Australia. The stream flow time series is decomposed into multi-frequency time series by discrete wavelet transform using the Haar, Coiflet and Daubechies mother wavelets. The wavelet coefficients are then imposed as input data to the neuro-fuzzy model. Models are developed based on Takagi-Sugeno-Kang fuzzy inference system with the grid partitioning approach for initializing the fuzzy rule-based structure. Mean-square error and Nash-Sutcliffe coefficient are chosen as the performance criteria. The results of the application show that the right selection of the inputs with high autocorrelation function improves the accuracy of forecasting. Comparing the performance of the hybrid WNF models with those of the original ANFIS models indicates that the hybrid WNF models produce significantly better results especially in longer-term forecasting.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 27 条
[1]   Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds [J].
Adamowski, Jan ;
Sun, Karen .
JOURNAL OF HYDROLOGY, 2010, 390 (1-2) :85-91
[2]  
[Anonymous], 2003, Nat. Sci
[3]   A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff [J].
Aqil, Muhammad ;
Kita, Ichiro ;
Yano, Akira ;
Nishiyama, Soichi .
JOURNAL OF HYDROLOGY, 2007, 337 (1-2) :22-34
[4]   Improving Ann-Based Short-Term and Long-Term Seasonal River Flow Forecasting with Signal Processing Techniques [J].
Badrzadeh, H. ;
Sarukkalige, R. ;
Jayawardena, A. W. .
RIVER RESEARCH AND APPLICATIONS, 2016, 32 (03) :245-256
[5]   Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting [J].
Badrzadeh, Honey ;
Sarukkalige, Ranjan ;
Jayawardena, A. W. .
JOURNAL OF HYDROLOGY, 2013, 507 :75-85
[6]   Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning [J].
Cannas, Barbara ;
Fanni, Alessandra ;
See, Linda ;
Sias, Giuliana .
PHYSICS AND CHEMISTRY OF THE EARTH, 2006, 31 (18) :1164-1171
[7]   Comparative analysis of fuzzy inference systems for water consumption time series prediction [J].
Firat, Mahmut ;
Turan, Mustafa Erkan ;
Yurdusev, Mehmet Ali .
JOURNAL OF HYDROLOGY, 2009, 374 (3-4) :235-241
[8]  
Iyengar S.S., 2002, FDN WAVELENT NETWORK
[9]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685
[10]  
Jang JSR., 1997, IEEE T AUTOM CONTROL, V42, P1482, DOI DOI 10.1109/TAC.1997.633847