An Improved Multi-Objective Particle Swarm Optimization Algorithm Based on Angle Preference

被引:0
|
作者
Ling, Qing-Hua [1 ]
Tang, Zhi-Hao [2 ,3 ]
Huang, Gan [2 ,3 ]
Han, Fei [2 ,3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp Sci, Zhenjiang 212100, Peoples R China
[2] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China
[3] Jiangsu Key Lab Secur Technol Ind Cyberspace, Zhenjiang 212013, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 12期
基金
中国国家自然科学基金;
关键词
multi-objective optimization; angle preference; particle swarm optimization; selection pressure; DOMINANCE RELATION;
D O I
10.3390/sym14122619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multi-objective particle swarm optimization (MOPSO) algorithms based on angle preference provide a set of preferred solutions by incorporating a user's preference. However, since the search mechanism is stochastic and asymmetric, traditional MOPSO based on angle preference are still easy to fall into local optima and lack enough selection pressure on excellent individuals. In this paper, an improved MOPSO algorithm based on angle preference called IAPMOPSO is proposed to alleviate those problems. First, to create a stricter partial order among the non-dominated solutions, reference vectors are established in the preference region, and the adaptive penalty-based boundary intersection (PBI) value is used to update the external archive. Second, to effectively alleviate the swarm to fall into local optima, an adaptive preference angle is designed to increase the diversity of the population. Third, neighborhood individuals are selected for each particle to update the individual optimum to increase the information exchange among the particles. With the proposed angle preference-based external archive update strategy, solutions with a smaller PBI are given higher priority to be selected, and thus the selection pressure on excellent individuals is enhanced. In terms of an increase in the diversity of the population, the adaptive preference angle adjustment strategy that gradually narrows the preferred area, and the individual optimum update strategy which updates the individual optimum according to the information of neighborhood individuals, are presented. The experimental results on the benchmark test functions and GEM data verify the effectiveness and efficiency of the proposed method.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Improved multi-objective particle swarm optimization algorithm based on phase angle reflection
    Li, T. (litingcsu@163.com), 1600, Northeast University (28):
  • [2] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [3] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [4] An improved multi-objective cultural algorithm based on particle swarm optimization
    Wu, Ya-Li
    Xu, Li-Qing
    Kongzhi yu Juece/Control and Decision, 2012, 27 (08): : 1127 - 1132
  • [5] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [6] IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm
    Ma, Borong
    Hua, Jun
    Ma, Zhixin
    Li, Xianbo
    PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 376 - 380
  • [7] An Improved Competitive Mechanism based Particle Swarm Optimization Algorithm for Multi-Objective Optimization
    Yuen, Man-Chung
    Ng, Sin-Chun
    Leung, Man-Fai
    2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 209 - 218
  • [8] Image Fusion based on an improved algorithm of Multi-objective Particle swarm Optimization
    Li, Juan
    Nan, Xu-Liang
    Bi, Si-Yuan
    Wu, Wei
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2013, 43 (SUPPL.1): : 477 - 480
  • [9] Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm
    Cui, Xue
    Gao, Jian
    Feng, Yunbin
    Zou, Chenlu
    Liu, Huanlei
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [10] Multi-objective particle swarm optimization based on minimal particle angle
    Gong, DW
    Zhang, Y
    Zhang, JH
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 571 - 580