Catalase-Integrated Hyaluronic Acid as Nanocarriers for Enhanced Photodynamic Therapy in Solid Tumor

被引:337
作者
Phua, Soo Zeng Fiona [1 ]
Yang, Guangbao [1 ]
Lim, Wei Qi [1 ,2 ]
Verma, Apoorva [3 ]
Chen, Hongzhong [1 ]
Thanabalu, Thirumaran [3 ]
Zhao, Yanli [1 ]
机构
[1] Nanyang Technol Univ, Div Chem & Biol Chem, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[2] Nanyang Technol Univ, NTU Northwestern Inst Nanomed, Interdisciplinary Grad Sch, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Biol Sci, 60 Nanyang Dr, Singapore 637551, Singapore
基金
新加坡国家研究基金会;
关键词
catalase; drug delivery; hyaluronic acid; hypoxia; photodynamic therapy; DRUG-DELIVERY; HYDROGEN-PEROXIDE; IN-SITU; CANCER; HYPOXIA; PROTEIN; PHOTOSENSITIZERS; CONJUGATION; RESISTANCE; BIOLOGY;
D O I
10.1021/acsnano.9b01087
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photodynamic therapy (PDT) as a treatment method has many advantages such as minimal invasiveness, repeatable dosage, and low systemic toxicity. Issues with conventional PDT agents include the limited availability of endogenous oxygen and difficulty in accumulation at the tumor site, which has hindered the successful treatment of tumors. Herein, we developed catalase-encapsulated hyaluronic-acid-based nanoparticles loaded with adamantane-modified photosensitizer for enhanced PDT of solid tumors. Chlorin e6 (Ce6) as the photosensitizer was modified with adamantane to yield adamantane-modified Ce6 (aCe6). The obtained nanosystem (HA-CAT@aCe6) could target overly expressed CD44 receptors on cancer cells, supplying oxygen by converting endogenous hydrogen peroxide (H2O2) to oxygen, and improving PDT efficacy upon light irradiation. HA-CAT@aCe6 nanoparticles showed high colloidal stability and monodispersity in aqueous solution. The uptake and targeting property of HA-CAT@aCe6 were demonstrated by confocal microscopy and flow cytometry in the MDA-MB-231 cell line possessing overly expressed CD44 receptors. The encapsulated catalase was able to decompose the endogenous H2O2 to generate O-2 in situ for relieving hypoxia in cells incubated under hypoxic conditions. Cell viability assays indicated that HA-CAT@aCe6 possessed minimal cytotoxicity in the dark, while presenting high cellular toxicity under 660 nm light irradiation at normoxic conditions. As a result of the catalase capability in relieving hypoxia, HA-CAT@aCe6 also exhibited high cellular cytotoxicity under hypoxic condition. In vivo experiments revealed selective tumor accumulation of HA-CAT@aCe6 in MDA-MB-231 tumor bearing nude mice. Significant tumor regression was observed after intravenous injection of HA-CAT@aCe6 under light irradiation in comparison to the control system without loading catalase. Thus, HA-CAT@aCe6 demonstrated a great potential in overcoming hypoxia for targeted PDT.
引用
收藏
页码:4742 / 4751
页数:10
相关论文
共 53 条
[1]   Photodynamic Therapy of Cancer: An Update [J].
Agostinis, Patrizia ;
Berg, Kristian ;
Cengel, Keith A. ;
Foster, Thomas H. ;
Girotti, Albert W. ;
Gollnick, Sandra O. ;
Hahn, Stephen M. ;
Hamblin, Michael R. ;
Juzeniene, Asta ;
Kessel, David ;
Korbelik, Mladen ;
Moan, Johan ;
Mroz, Pawel ;
Nowis, Dominika ;
Piette, Jacques ;
Wilson, Brian C. ;
Golab, Jakub .
CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (04) :250-281
[2]   FDA-approved poly(ethylene glycol)-protein conjugate drugs [J].
Alconcel, Steevens N. S. ;
Baas, Arnold S. ;
Maynard, Heather D. .
POLYMER CHEMISTRY, 2011, 2 (07) :1442-1448
[3]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[4]  
[Anonymous], NEW APPROACHES CANC
[5]   Hyaluronic acid-green tea catechin micellar nanocomplexes: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity [J].
Bae, Ki Hyun ;
Tan, Susi ;
Yamashita, Atsushi ;
Ang, Wei Xia ;
Gao, Shu Jun ;
Wang, Shu ;
Chung, Joo Eun ;
Kurisawa, Motoichi .
BIOMATERIALS, 2017, 148 :41-53
[6]  
Beasley NJP, 2002, CANCER RES, V62, P2493
[7]   Photodynamic therapy and anti-tumour immunity [J].
Castano, Ana P. ;
Mroz, Pawel ;
Hamblin, Michael R. .
NATURE REVIEWS CANCER, 2006, 6 (07) :535-545
[8]   Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization [J].
Celli, Jonathan P. ;
Spring, Bryan Q. ;
Rizvi, Imran ;
Evans, Conor L. ;
Samkoe, Kimberley S. ;
Verma, Sarika ;
Pogue, Brian W. ;
Hasan, Tayyaba .
CHEMICAL REVIEWS, 2010, 110 (05) :2795-2838
[9]   Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy [J].
Chen, Qian ;
Chen, Jiawen ;
Liang, Chao ;
Feng, Liangzhu ;
Dong, Ziliang ;
Song, Xuejiao ;
Song, Guosheng ;
Liu, Zhuang .
JOURNAL OF CONTROLLED RELEASE, 2017, 263 :79-89
[10]   Photodynamic therapy for cancer [J].
Dolmans, DEJGJ ;
Fukumura, D ;
Jain, RK .
NATURE REVIEWS CANCER, 2003, 3 (05) :380-387