Cerebral Microbleeds Detection via Discrete Wavelet Transform and Back Propagation Neural Network

被引:0
作者
Hong, Jin [1 ]
Lu, Zhi-Hai [2 ]
机构
[1] Sun Yat Sen Univ, Sch Earth Sci & Engn, Guangzhou, Guangdong, Peoples R China
[2] Nanjing Normal Univ, Sch Educ Sci, Nanjing, Jiangsu, Peoples R China
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON SOCIAL SCIENCE, PUBLIC HEALTH AND EDUCATION (SSPHE 2018) | 2018年 / 196卷
关键词
discrete wavelet transform; back propagation; shallow neural network; cerebral microbleeds; FACIAL EMOTION RECOGNITION; COMPUTER-AIDED DETECTION; SUPPORT VECTOR MACHINE; RECTIFIED LINEAR UNIT; VOXELWISE DETECTION; ENTROPY;
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Cerebral microbleeds (CMBs) are small perivascular hemosiderin deposits leaked through cerebral small vessels in normal or near normal tissue. The positions distribution of CMBs can indicate some underlying aetiologies. CMBs can be visualized by susceptibility-weighted imaging (SWI) which is high sensitivity to hemosiderin. In this paper, we proposed a hybrid method to detect the CMBs automatically. This method first applied discrete wavelet transform (DWT) to extract the features of the brain images, and then employed principal component analysis (PCA) to perform reduction of features. At last, the obtained features were inputted to back propagation shallow neural network (BPNN) with a single-hidden layer for training and prediction. K-fold cross validation was applied to avoid overfitting and evaluate the generalization ability of BPNN for selecting the best model. Based on this method, a good result was obtained with a sensitivity of 88.47 +/- 0.96%, a specificity of 88.38 +/- 1.00%, and an accuracy of 88.43 +/- 0.97%, which is better than two state-of-the-art approaches.
引用
收藏
页码:228 / 232
页数:5
相关论文
共 38 条
[1]   Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images [J].
Bian, Wei ;
Hess, Christopher P. ;
Chang, Susan M. ;
Nelson, Sarah J. ;
Lupo, Janine M. .
NEUROIMAGE-CLINICAL, 2013, 2 :282-290
[2]   Wavelet packet transform for detection of single events in acoustic emission signals [J].
Bianchi, Davide ;
Mayrhofer, Erwin ;
Groeschl, Martin ;
Betz, Gerhard ;
Vernes, Andras .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 64-65 :441-451
[3]   Characterization of transients in transformers using discrete wavelet transforms [J].
Butler-Purry, KL ;
Bagriyanik, M .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (02) :648-656
[4]   Cerebral microbleeds: detection, mechanisms and clinical challenges [J].
Charidimou, Andreas ;
Werring, David J. .
FUTURE NEUROLOGY, 2011, 6 (05) :587-609
[5]   Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging [J].
Fazlollahi, Amir ;
Meriaudeau, Fabrice ;
Giancardo, Luca ;
Villemagne, Victor L. ;
Rowe, Christopher C. ;
Yates, Paul ;
Salvado, Olivier ;
Bourgeat, Pierrick .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 46 :269-276
[6]   Cerebral microbleeds: a guide to detection and interpretation [J].
Greenberg, Steven M. ;
Vernooij, Meike W. ;
Cordonnier, Charlotte ;
Viswanathan, Anand ;
Salman, Rustorn Al-Shahi ;
Warach, Steven ;
Launer, Lenore J. ;
Van Buchem, Mark A. ;
Breteler, Monique M. B. .
LANCET NEUROLOGY, 2009, 8 (02) :165-174
[7]   Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform [J].
Kuijf, Hugo J. ;
de Bresser, Jeroen ;
Geerlings, Mirjam I. ;
Conijn, Mandy M. A. ;
Viergever, Max A. ;
Biessels, Geert Jan ;
Vincken, Koen L. .
NEUROIMAGE, 2012, 59 (03) :2266-2273
[8]   MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength [J].
Nandigam, R. N. K. ;
Viswanathan, A. ;
Delgado, P. ;
Skehan, M. E. ;
Smith, E. E. ;
Rosand, J. ;
Greenberg, S. M. ;
Dickerson, B. C. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2009, 30 (02) :338-343
[9]   On lines and planes of closest fit to systems of points in space. [J].
Pearson, Karl .
PHILOSOPHICAL MAGAZINE, 1901, 2 (7-12) :559-572
[10]   Facial emotion recognition and its relationship to cognition and depressive symptoms in patients with Parkinson's disease [J].
Pietschnig, J. ;
Schroeder, L. ;
Ratheiser, I. ;
Kryspin-Exner, I. ;
Pflueger, M. ;
Moser, D. ;
Auff, E. ;
Pirker, W. ;
Pusswald, G. ;
Lehrner, J. .
INTERNATIONAL PSYCHOGERIATRICS, 2016, 28 (07) :1165-1179