Operational calculi for multidimensional nonlocal evolution boundary value problems

被引:3
作者
Dimovski, Ivan H. [1 ]
Tsankov, Yulian T. [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[2] Univ Sofia, Fac Math & Informat, Sofia, Bulgaria
来源
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE | 2011年 / 1410卷
关键词
evolution equation; nonlocal BVP; non-classical convolution; multivariate convolution algebra; ring of multipliers; localization; multiplier fractions; divisor of zero; uniqnes;
D O I
10.1063/1.3664367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we propose a direct approach to the construction of operational calculi connected with linear nonlocal boundary value problems for a large class of linear evolution equations with several space variables and one time variable.
引用
收藏
页数:14
相关论文
共 11 条
[1]  
Bozhinov N. S, 1990, DIFF EQUAT, V26, P741
[2]  
Dimovski I., 2011, P 40 SPRING C UBM, P169
[3]  
Dimovski I.H., 1990, CONVOLUTIONAL CALCUL
[4]  
Dimovski I.H, 1995, P STEKLOV I MATH, P53
[5]   Operational Calculus Approach to Nonlocal Cauchy Problems [J].
Dimovski, Ivan ;
Spiridonova, Margarita .
MATHEMATICS IN COMPUTER SCIENCE, 2010, 4 (2-3) :243-258
[6]  
F Korobeinik Y., 1992, THEOREM STONE WEIERS
[7]   AN OPERATIONAL METHOD IN PARTIAL DIFFERENTIAL EQUATIONS [J].
GUTTERMAN, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (02) :468-+
[8]  
Lang, 1965, Algebra
[9]  
Larsen R., 1971, INTRO THEORY MULTIPL
[10]  
Mikusinski J., 1959, Operational calculus