Partially reduced SnO2 nanoparticles anchored on carbon nanofibers for high performance sodium-ion batteries

被引:41
作者
Liu, Zhiming [1 ]
Song, Taeseup [2 ]
Kim, Joo Hyun [1 ]
Li, Zhangpeng [3 ]
Xiang, Juan [1 ]
Lu, Tianchi [1 ]
Paik, Ungyu [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[2] Yeungnam Univ, Sch Mat Sci & Engn, Gyongsan 712749, South Korea
[3] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
关键词
SnO2; Reduced Sn; Carbon; Rate capability; Sodium-ion batteries; ANODE MATERIALS; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; TIN DIOXIDE; OXIDE; LITHIUM; NANOCOMPOSITES; NANOWIRES; MECHANISM; INSERTION;
D O I
10.1016/j.elecom.2016.09.012
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One-dimensional (1-D) carbon nanofibers anchored with partially reduced SnO2 nanoparticles (SnO2/Sn@C) were successfully synthesized through a simple electrospinning method followed by carbon coating and thermal reduction processes. The partially reduced Sn frameworks, combined with the carbon fibers, provide a more favorable mechanism for sodiation/desodiation than SnO2. As a result, SnO2/Sn@C exhibits a high reversible capacity (536 mAh g(-1) after 50 cycles) and an excellent rate capability (396 mAh g(-1) even at 2 C rate) when evaluated as an anode material for sodium-ion batteries (SIBs). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 32 条
[1]   Anodic nanoporous SnO2 grown on Cu foils as superior binder-free Na-ion battery anodes [J].
Bian, Haidong ;
Zhang, Jie ;
Yuen, Muk-Fung ;
Kang, Wenpei ;
Zhan, Yawen ;
Yu, Denis Y. W. ;
Xu, Zhengtao ;
Li, Yang Yang .
JOURNAL OF POWER SOURCES, 2016, 307 :634-640
[2]   Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries [J].
Cui, Jiang ;
Xu, Zheng-Long ;
Yao, Shanshan ;
Huang, Jiaqiang ;
Huang, Jian-Qiu ;
Abouali, Sara ;
Garakani, Mohammad Akbari ;
Ning, Xiaohui ;
Kim, Jang-Kyo .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (28) :10964-10973
[3]   Sodiation vs. lithiation phase transformations in a high rate - high stability SnO2 in carbon nanocomposite [J].
Ding, Jia ;
Li, Zhi ;
Wang, Huanlei ;
Cui, Kai ;
Kohandehghan, Alireza ;
Tan, Xuehai ;
Karpuzov, Dimitre ;
Mitlin, David .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :7100-7111
[4]   Reversible Insertion of Sodium in Tin [J].
Ellis, L. D. ;
Hatchard, T. D. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) :A1801-A1805
[5]   Probing the Failure Mechanism of SnO2 Nanowires for Sodium-Ion Batteries [J].
Gu, Meng ;
Kushima, Akihiro ;
Shao, Yuyan ;
Zhang, Ji-Guang ;
Liu, Jun ;
Browning, Nigel D. ;
Li, Ju ;
Wang, Chongmin .
NANO LETTERS, 2013, 13 (11) :5203-5211
[6]   Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries [J].
Han, Xiaogang ;
Liu, Yang ;
Jia, Zheng ;
Chen, Yu-Chen ;
Wan, Jiayu ;
Weadock, Nicholas ;
Gaskell, Karen J. ;
Li, Teng ;
Hu, Liangbing .
NANO LETTERS, 2014, 14 (01) :139-147
[7]   Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries [J].
Hu, Zhe ;
Zhu, Zhiqiang ;
Cheng, Fangyi ;
Zhang, Kai ;
Wang, Jianbin ;
Chen, Chengcheng ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (04) :1309-1316
[8]   Exceptionally highly performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon [J].
Jahel, Ali ;
Ghimbeu, Camelia Matei ;
Darwiche, Ali ;
Vidal, Loic ;
Hajjar-Garreau, Samar ;
Vix-Guterl, Cathie ;
Monconduit, Laure .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) :11960-11969
[9]   Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries [J].
Kalubarme, Ramchandra S. ;
Lee, Jae-Young ;
Park, Chan-Jin .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (31) :17226-17237
[10]   Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries [J].
Komaba, Shinichi ;
Murata, Wataru ;
Ishikawa, Toru ;
Yabuuchi, Naoaki ;
Ozeki, Tomoaki ;
Nakayama, Tetsuri ;
Ogata, Atsushi ;
Gotoh, Kazuma ;
Fujiwara, Kazuya .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) :3859-3867