Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data

被引:26
作者
Fernandez-Tajes, Juan [1 ]
Gaulton, Kyle J. [2 ]
van de Bunt, Martijn [1 ,3 ,8 ]
Torres, Jason [1 ,3 ]
Thurner, Matthias [1 ,3 ]
Mahajan, Anubha [1 ]
Gloyn, Anna L. [1 ,3 ,4 ]
Lage, Kasper [5 ,6 ,7 ]
McCarthy, Mark I. [1 ,3 ,4 ]
机构
[1] Univ Oxford, Wellcome Ctr Human Genet, Oxford, England
[2] Univ Calif San Diego, Dept Pediat, San Diego, CA 92103 USA
[3] Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England
[4] Churchill Hosp, Oxford NIHR Biomed Res Ctr, Oxford, England
[5] Massachusetts Gen Hosp, Dept Surg, Boston, MA 02114 USA
[6] Broad Inst MIT & Harvard, Cambridge, MA USA
[7] Harvard Med Sch, Boston, MA 02115 USA
[8] Novo Nordisk AS, Dept Bioinformat & Data Min, Malov, Denmark
基金
美国国家卫生研究院; 欧盟地平线“2020”; 英国医学研究理事会;
关键词
WIDE ASSOCIATION; INSULIN-SECRETION; ANNOTATION; ARCHITECTURE; PRIORITIZATION; IDENTIFICATION; INTERACTOME; DYSFUNCTION; EXPRESSION; INSIGHTS;
D O I
10.1186/s13073-019-0628-8
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundGenome-wide association studies (GWAS) have identified several hundred susceptibility loci for type 2 diabetes (T2D). One critical, but unresolved, issue concerns the extent to which the mechanisms through which these diverse signals influencing T2D predisposition converge on a limited set of biological processes. However, the causal variants identified by GWAS mostly fall into a non-coding sequence, complicating the task of defining the effector transcripts through which they operate.MethodsHere, we describe implementation of an analytical pipeline to address this question. First, we integrate multiple sources of genetic, genomic and biological data to assign positional candidacy scores to the genes that map to T2D GWAS signals. Second, we introduce genes with high scores as seeds within a network optimization algorithm (the asymmetric prize-collecting Steiner tree approach) which uses external, experimentally confirmed protein-protein interaction (PPI) data to generate high-confidence sub-networks. Third, we use GWAS data to test the T2D association enrichment of the non-seed proteins introduced into the network, as a measure of the overall functional connectivity of the network.ResultsWe find (a) non-seed proteins in the T2D protein-interaction network so generated (comprising 705 nodes) are enriched for association to T2D (p=0.0014) but not control traits, (b) stronger T2D-enrichment for islets than other tissues when we use RNA expression data to generate tissue-specific PPI networks and (c) enhanced enrichment (p=3.9x10(-5)) when we combine the analysis of the islet-specific PPI network with a focus on the subset of T2D GWAS loci which act through defective insulin secretion.ConclusionsThese analyses reveal a pattern of non-random functional connectivity between candidate causal genes at T2D GWAS loci and highlight the products of genes including YWHAG, SMAD4 or CDK2 as potential contributors to T2D-relevant islet dysfunction. The approach we describe can be applied to other complex genetic and genomic datasets, facilitating integration of diverse data types into disease-associated networks.
引用
收藏
页数:14
相关论文
共 56 条
[1]   Evaluating empirical bounds on complex disease genetic architecture [J].
Agarwala, Vineeta ;
Flannick, Jason ;
Sunyaev, Shamil ;
Altshuler, David .
NATURE GENETICS, 2013, 45 (12) :1418-U167
[2]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[3]  
[Anonymous], 2005, LSA LATENT SEMANTIC, pA15
[4]   Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals [J].
Antoun, Ghadi ;
McMurray, Fiona ;
Thrush, A. Brianne ;
Patten, David A. ;
Peixoto, Alyssa C. ;
Slack, Ruth S. ;
McPherson, Ruth ;
Dent, Robert ;
Harper, Mary-Ellen .
DIABETOLOGIA, 2015, 58 (12) :2861-2866
[5]   Defective Wnt Signaling: A Potential Contributor to Cardiometabolic Disease? [J].
Arnold, Amy C. ;
Robertson, David .
DIABETES, 2015, 64 (10) :3342-3344
[6]   Reconstructing targetable pathways in lung cancer by integrating diverse omics data [J].
Balbin, O. Alejandro ;
Prensner, John R. ;
Sahu, Anirban ;
Yocum, Anastasia ;
Shankar, Sunita ;
Malik, Rohit ;
Fermin, Damian ;
Dhanasekaran, Saravana M. ;
Chandler, Benjamin ;
Thomas, Dafydd ;
Beer, David G. ;
Cao, Xuhong ;
Nesvizhskii, Alexey I. ;
Chinnaiyan, Arul M. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Effects of fasting on insulin action and glucose kinetics in lean and obese men and women [J].
Bergman, Bryan C. ;
Cornier, Marc-Andre ;
Horton, Tracy J. ;
Bessesen, Daniel H. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2007, 293 (04) :E1103-E1111
[9]   ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Hackl, Hubert ;
Charoentong, Pornpimol ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Fridman, Wolf-Herman ;
Pages, Franck ;
Trajanoski, Zlatko ;
Galon, Jerome .
BIOINFORMATICS, 2009, 25 (08) :1091-1093
[10]   An Expanded View of Complex Traits: From Polygenic to Omnigenic [J].
Boyle, Evan A. ;
Li, Yang I. ;
Pritchard, Jonathan K. .
CELL, 2017, 169 (07) :1177-1186