Diffeomorphism groups of tame Cantor sets and Thompson-like groups

被引:5
|
作者
Funar, Louis [1 ]
Neretin, Yurii [2 ,3 ]
机构
[1] Univ Grenoble Alpes, Inst Fourier, Dept Math, UMR 5582, CS40700, F-38058 Grenoble 9, France
[2] Univ Vienna, Dept Math, Nordbergstr 15, Vienna, Austria
[3] Moscow MV Lomonosov State Univ, Inst Theoret & Expt Phys, Mech Math Dept, Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
基金
奥地利科学基金会;
关键词
mapping class group; infinite type surfaces; braided Thompson group; diffeomorphism group; Cantor set; self-similar sets; iterated function systems; MAPPING CLASS GROUP; LIPSCHITZ EQUIVALENCE; NILPOTENT GROUP; GENUS ZERO; GROUPS NV; CIRCLE; INTERVAL; HOMEOMORPHISMS; REGULARITY; FOLIATIONS;
D O I
10.1112/S0010437X18007066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The group of C-1-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete (possibly trivial). Thompson's groups come out of this construction when we consider central ternary Cantor subsets of an interval. Brin's higher-dimensional generalizations nV of Thompson's group V arise when we consider products of central ternary Cantor sets. We derive that the C-2-smooth mapping class group of a sparse Cantor sphere pair is a discrete countable group and produce this way versions of the braided Thompson groups.
引用
收藏
页码:1066 / 1110
页数:45
相关论文
共 50 条