A Hydride Route to Ternary Alkali Metal Borides: A Case Study of Lithium Nickel Borides

被引:17
作者
Gvozdetskyi, Volodymyr [1 ]
Hanrahan, Michael P. [1 ,2 ]
Ribeiro, Raquel A. [3 ,4 ]
Kim, Tae-Hoon [2 ]
Zhou, Lin [2 ]
Rossini, Aaron J. [1 ,2 ]
Canfield, Paul C. [2 ,3 ]
Zaikina, Julia, V [1 ]
机构
[1] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[2] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[4] Univ Fed ABC UFABC, CCNH, BR-09210580 Santo Andre, SP, Brazil
关键词
boron; hydrides; intermetallic phases; magnetic properties; solid-state reactions; TOTAL-ENERGY CALCULATIONS; CRYSTAL-STRUCTURE; THERMOMAGNETIC PROPERTIES; PHYSICAL-PROPERTIES; MAGNETIC-PROPERTIES; ABSOLUTE-STRUCTURE; PLASMA SYNTHESIS; DESIGN; PHASES; GROWTH;
D O I
10.1002/chem.201805398
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ternary lithium nickel borides LiNi3B1.8 and Li2.8Ni16B8 have been synthesized by using reactive LiH as a precursor. This synthetic route allows better mixing of the precursor powders, thus facilitating rapid preparation of the alkali-metal-containing ternary borides. This method is suitable for "fast screening" of multicomponent systems comprised of elements with drastically different reactivities. The crystal structures of the compounds LiNi3B1.8 and Li2.8Ni16B8 have been re-investigated by a combination of single-crystal X-ray/synchrotron powder diffraction, solid-state Li-7 and B-11 NMR spectroscopies, and scanning transmission electron microscopy. This has allowed the determination of fine structural details, including the split position of Ni sites and the ordering of B vacancies. Field-dependent and temperature-dependent magnetization measurements are consistent with spin-glass behavior for both samples.
引用
收藏
页码:4123 / 4135
页数:13
相关论文
共 64 条
[1]   Rediscovering the Crystal Chemistry of Borides [J].
Akopov, Georgiy ;
Yeung, Michael T. ;
Kaner, Richard B. .
ADVANCED MATERIALS, 2017, 29 (21)
[2]  
Albert B, 2009, Angew. Chem, V121, P8794, DOI [DOI 10.1002/ANGE.200903246, DOI 10.1016/J.JSSC.2005.11.041]
[3]   Boron: Elementary Challenge for Experimenters and Theoreticians [J].
Albert, Barbara ;
Hillebrecht, Harald .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (46) :8640-8668
[4]  
[Anonymous], APEX3 VERSION 2017 3
[5]  
[Anonymous], 2017, Angew. Chem, DOI DOI 10.1002/ANGE.201611756
[6]  
Barthel J., 2018, DR PROBE HIGH RESOLU
[7]   LEAST-SQUARES ABSOLUTE-STRUCTURE REFINEMENT - PRACTICAL EXPERIENCE AND ANCILLARY CALCULATIONS [J].
BERNARDINELLI, G ;
FLACK, HD .
ACTA CRYSTALLOGRAPHICA SECTION A, 1985, 41 (SEP) :500-511
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Boron isotope effect in superconducting MgB2 [J].
Bud'ko, SL ;
Lapertot, G ;
Petrovic, C ;
Cunningham, CE ;
Anderson, N ;
Canfield, PC .
PHYSICAL REVIEW LETTERS, 2001, 86 (09) :1877-1880
[10]  
Buschow K. H. J., 1977, MAGNETIC PROPERTIES