Constrained and linear Harnack inequalities for parabolic equations

被引:58
作者
Chow, B [1 ]
Hamilton, RS [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
关键词
D O I
10.1007/s002220050162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:213 / 238
页数:26
相关论文
共 11 条
[1]   HARNACK INEQUALITIES FOR EVOLVING HYPERSURFACES [J].
ANDREWS, B .
MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (02) :179-197
[2]  
CAO HD, 1993, INVENT MATH, V109, P247
[3]   ON HARNACK INEQUALITY AND ENTROPY FOR THE GAUSSIAN CURVATURE FLOW [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (04) :469-483
[4]   THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) :1003-1014
[5]  
Chow B, 1996, MATH RES LETT, V3, P549
[6]  
Chow B, 1995, MATH RES LETT, V2, P701
[7]  
Hamilton R., 1988, Mathematics and General Relativity, V71, P237, DOI [10.1090/conm/071/954419, DOI 10.1090/CONM/071/954419]
[8]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225
[9]  
HAMILTON RS, 1995, J DIFFER GEOM, V41, P215
[10]  
Hamilton RS., 1993, Commun. Anal. Geom, V1, P113, DOI [10.4310/CAG.1993.v1.n1.a6, DOI 10.4310/CAG.1993.V1.N1.A6]