Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

被引:59
作者
Bomberg, Malin [1 ]
Nyyssonen, Mari [1 ]
Pitkanen, Petteri [2 ]
Lehtinen, Anne [2 ]
Itavaara, Merja [1 ]
机构
[1] VTT Tech Res Ctr Finland, Espoo 02044, Finland
[2] Posiva Oy, Olkiluoto 27160, Eurajoki, Finland
基金
芬兰科学院;
关键词
GRANITIC GROUNDWATER; ANAEROBIC OXIDATION; METABOLIC-ACTIVITY; MARINE-SEDIMENTS; AARHUS BAY; DIVERSITY; MICROORGANISMS; REDUCTION; BACTERIA; SULFUR;
D O I
10.1155/2015/979530
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296-798m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250-350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing epsilon-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and gamma-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415-559m depth. Typical indicator microorganisms for sulphate-methane transition zones inmarine sediments, such as ANME-1 archaea, alpha-, beta- and delta-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems.
引用
收藏
页数:17
相关论文
共 55 条
[1]  
Aalto P., 2011, 201125 WR POS OY OLK
[2]  
Ahokas H., 2008, 200869 WR POS OY EUR
[3]  
[Anonymous], 2006, 200602 POSIVA
[4]   Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with antarctic assemblages [J].
Bano, N ;
Ruffin, S ;
Ransom, B ;
Hollibaugh, JT .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (02) :781-789
[5]   REMARKABLE ARCHAEAL DIVERSITY DETECTED IN A YELLOWSTONE-NATIONAL-PARK HOT-SPRING ENVIRONMENT [J].
BARNS, SM ;
FUNDYGA, RE ;
JEFFRIES, MW ;
PACE, NR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1609-1613
[6]  
Bomberg M., 2014, OPEN J ECOL, V4, P468, DOI [DOI 10.4236/oje.2014.48040, 10.4236/oje.2014.48040]
[7]   SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J].
Castaneda, Homero ;
Benetton, Xochitl D. .
CORROSION SCIENCE, 2008, 50 (04) :1169-1183
[8]   Metabolic activity of subsurface life in deep-sea sediments [J].
D'Hondt, S ;
Rutherford, S ;
Spivack, AJ .
SCIENCE, 2002, 295 (5562) :2067-2070
[9]   Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1 [J].
Dalla Vecchia, E. ;
Suvorova, E. I. ;
Maillard, J. ;
Bernier-Latmani, R. .
GEOBIOLOGY, 2014, 12 (01) :48-61
[10]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072