Edge-choosability of planar graphs without non-induced 5-cycles

被引:9
|
作者
Cai, Jiansheng [1 ]
Hou, Jianfeng [2 ]
Zhang, Xia [3 ]
Liu, Guizhen [2 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Peoples R China
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[3] Shandong Normal Univ, Coll Math Sci, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar graph; Edge-coloring; Choosability; Cycle; Chord; Combinatorial problems; LIST EDGE;
D O I
10.1016/j.ipl.2008.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A graph G is edge-L-colorable, if for a given edge assignment L = {L(e): e is an element of E(G)}, there exits a proper edge-coloring phi of G such that phi(e) is an element of L(e) for all e is an element of E(G). If G is edge-L-colorable for every edge assignment L with vertical bar L(e)vertical bar >= k for e is an element of E(G), then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph without non-induced 5-cycles, then G is edge-k-choosable, where k = max{7. Delta(G) + 1}. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:343 / 346
页数:4
相关论文
共 50 条
  • [1] Edge choosability of planar graphs without 5-cycles with a chord
    Chen, Yongzhu
    Zhu, Weiyi
    Wang, Weifan
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2233 - 2238
  • [2] A Note on Edge-Group Choosability of Planar Graphs without 5-Cycles
    Khamseh, Amir
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [3] Edge-choosability of planar graphs without chordal 6-Cycles
    Ge, Liansheng
    Cai, Jiansheng
    UTILITAS MATHEMATICA, 2011, 86 : 289 - 296
  • [4] Edge-choosability of planar graphs without chordal 7-Cycles
    Cai, Jiansheng
    Ge, Liansheng
    Zhang, Xia
    Liu, Guizhen
    ARS COMBINATORIA, 2011, 100 : 169 - 176
  • [5] A note on edge-choosability of planar graphs without intersecting 4-cycles
    Ma Q.
    Wang J.
    Cai J.
    Zhang S.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 367 - 372
  • [6] Edge-choosability of planar graphs without adjacent triangles or without 7-cycles
    Hou, Jianfeng
    Liu, Guizhen
    Cai, Jiansheng
    DISCRETE MATHEMATICS, 2009, 309 (01) : 77 - 84
  • [7] Neighbor Sum Distinguishing Total Choosability of Planar Graphs without 5-cycles
    Qiu, Baojian
    Wang, Jihui
    Liu, Yan
    ARS COMBINATORIA, 2020, 152 : 141 - 149
  • [8] A SUFFICIENT CONDITION FOR ACYCLIC 5-CHOOSABILITY OF PLANAR GRAPHS WITHOUT 5-CYCLES
    Sun, Lin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 415 - 430
  • [9] Choosability and edge choosability of planar graphs without five cycles
    Wang, WF
    Lih, KW
    APPLIED MATHEMATICS LETTERS, 2002, 15 (05) : 561 - 565
  • [10] Acyclic edge coloring of planar graphs without 5-cycles
    Shu, Qiaojun
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1211 - 1223