Stochastic and deterministic simulation of nonisothermal crystallization of polymers

被引:28
作者
Micheletti, A
Burger, M
机构
[1] Univ Milan, MIRIAM, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Johannes Kepler Univ, Ind Math Inst, A-4040 Linz, Austria
关键词
polymer crystallization; stochastic simulation; random differential equations; mathematical morphology;
D O I
10.1023/A:1017923703579
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper is devoted to the numerical simulation of nonisothermal crystallization of polymers, which may be modelled as a stochastic birth-and-growth process. One of the main aims is to develop efficient algorithms for the stochastic simulation of such process. We put a special emphasis on the problem of computing the surface density of crystals, which is an important factor for the mechanical properties of the solidified material. Moreover, an averaged deterministic model, designed as an approximation in the case of many small crystals (which is very frequent in industrial applications), is presented, and the results of numerical simulations are compared with the corresponding simulations of the stochastic model.
引用
收藏
页码:169 / 193
页数:25
相关论文
共 50 条
[21]   Enhancing the melt crystallization of polymers, especially slow crystallizing polymers like PLLA and PET [J].
Tonelli, Alan E. .
POLYMER CRYSTALLIZATION, 2020, 3 (01)
[22]   Crystallization of Polymers under the Influence of an External Force Field [J].
Payal, Rajdeep Singh ;
Sommer, Jens-Uwe .
POLYMERS, 2021, 13 (13)
[23]   Real time scattering measurements of the crystallization of polymers and their blends [J].
Stein, RS ;
Cronauer, J ;
Zachmann, HG .
JOURNAL OF MOLECULAR STRUCTURE, 1996, 383 (1-3) :19-22
[24]   Optimal Control of Non-isothermal Polymer Crystallization Processes in a Deterministic Model [J].
Fernandez, Luis A. ;
Escobedo, Ramon .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 :1051-+
[25]   A Novel Deterministic-Stochastic Crossover Method for Simulating Biochemical Networks [J].
Sabnis, Amit ;
Harrison, Robert W. .
2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2009, :315-+
[26]   A comparison of deterministic and stochastic approaches for sensitivity analysis in computational systems biology [J].
Simoni, Giulia ;
Hong Thanh Vo ;
Priami, Corrado ;
Marchetti, Luca .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (02) :527-540
[27]   Stochastic simulation in systems biology [J].
Szekely, Tamas, Jr. ;
Burrage, Kevin .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2014, 12 (20-21) :14-25
[28]   Stochastic Simulation of Cellular Metabolism [J].
Clement, Emalie J. ;
Schulze, Thomas T. ;
Soliman, Ghada A. ;
Wysocki, Beata Joanna ;
Davis, Paul H. ;
Wysocki, Tadeusz A. .
IEEE ACCESS, 2020, 8 :79734-79744
[29]   Calibrated PSCAR™ stochastic simulation [J].
Cong Que Dinh ;
Nagahara, Seiji ;
Shiraishi, Gousuke ;
Minekawa, Yukie ;
Kamei, Yuya ;
Carcasi, Michael ;
Ide, Hiroyuki ;
Kondo, Yoshihiro ;
Yoshida, Yuichi ;
Yoshihara, Kosuke ;
Shimada, Ryo ;
Tomono, Masaru ;
Moriya, Teruhiko ;
Takeshita, Kazuhiro ;
Nafus, Kathleen ;
Biesemans, Serge ;
Petersen, John S. ;
De Simone, Danilo ;
Foubert, Philippe ;
De Bisschop, Peter ;
Vandenberghe, Geert ;
Stock, Hans-Juergen ;
Meliorisz, Balint .
EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY X, 2019, 10957
[30]   Stochastic simulation of chemical chaos [J].
Wang, HL ;
Xin, HW .
CHINESE SCIENCE BULLETIN, 1997, 42 (01) :47-50