2-DISTANCE 4-COLORABILITY OF PLANAR SUBCUBIC GRAPHS WITH GIRTH AT LEAST 22

被引:7
作者
Borodin, Oleg V. [1 ,2 ]
Ivanova, Anna O. [3 ,4 ]
机构
[1] Russian Acad Sci, Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Yakutsk State Univ, Inst Math, Yakutsk 677891, Russia
[4] North Eastern Fed Univ, Yakutsk 677891, Russia
基金
俄罗斯基础研究基金会;
关键词
planar graph; subcubic graph; 2-distance coloring; COLORING SQUARES;
D O I
10.7151/dmgt.1592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trivial lower bound for the 2-distance chromatic number chi(2)(G) of any graph G with maximum degree Delta is Delta +1. It is known that chi(2) = Delta + 1 if the girth g of G is at least 7 and Delta is large enough. There are graphs with arbitrarily large Delta and g <= 6 having chi(2) (C) >= Delta + 2. We prove the 2-distance 4-colorability of planar subcubic graphs with g >= 22.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 21 条
[1]   Coloring powers of planar graphs [J].
Agnarsson, G ;
Halldórsson, MM .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (04) :651-662
[2]  
Agnarsson G, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P654
[3]  
Borodin OV, 2006, SIB ELECTRON MATH RE, V3, P441
[4]   2-distance (Δ+2)-coloring of planar graphs with girth six and Δ ≥ 18 [J].
Borodin, O. V. ;
Ivanova, A. O. .
DISCRETE MATHEMATICS, 2009, 309 (23-24) :6496-6502
[5]  
Borodin O.V., 2004, Siberian Electronic Math. Reports, V1, P129
[6]  
Borodin O.V., 2005, DISKRETN ANAL ISSLED, V12, P32
[7]   List 2-distance (Δ+2)-coloring of planar graphs with girth six [J].
Borodin, Oleg V. ;
Ivanova, Anna O. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1257-1262
[8]  
Borodin Oleg V., 2004, SIB ELEKT MAT IZV, V1, P76
[9]  
[Бородин Олег Вениаминович Borodin Oleg Veniaminovich], 2011, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V18, P18
[10]  
BORODIN OV, 2001, DISKRETN ANAL ISSL 1, V8, P9