Surjective multidimensional cellular automata are non-wandering: A combinatorial proof

被引:10
作者
Acerbi, Luigi [1 ]
Dennunzio, Alberto [2 ]
Formenti, Enrico [3 ]
机构
[1] Univ Edinburgh, DTC Neuroinformat & Computat Neurosci, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, I-20126 Milan, Italy
[3] Univ Nice Sophia Antipolis, Lab I3S, F-06903 Sophia Antipolis, France
关键词
Combinatorial problems; Multidimensional cellular automata; Symbolic dynamics; Discrete dynamical systems; EQUICONTINUITY; POINTS;
D O I
10.1016/j.ipl.2012.12.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A combinatorial proof that surjective D-dimensional CA are non-wandering is given. This answers an old open question stated in Blanchard and Tisseur (2000) [3]. Moreover, an explicit upper bound for the return time is given. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 159
页数:4
相关论文
empty
未找到相关数据