Efficient Noise Variance Estimation Under Pilot Contamination for Massive MIMO Systems

被引:9
作者
Iscar, Jorge [1 ,2 ]
Guvenc, Ismail [3 ]
Dikmese, Sener [3 ,4 ]
Rupasinghe, Nadisanka [3 ]
机构
[1] Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33199 USA
[2] SolVIS Inc, Knoxville, TN 37921 USA
[3] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[4] Huawei Technol, S-16440 Kista, Sweden
基金
美国国家科学基金会;
关键词
5G; CRLB; massive MIMO; maximum likelihood; method of moments; MMSE channel estimation; noise variance estimation; pilot contamination; CHANNEL ESTIMATION; CELLULAR NETWORKS; SNR ESTIMATION; OFDM SYSTEMS; WIRELESS; ANTENNAS;
D O I
10.1109/TVT.2017.2766226
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Massive multiple input multiple output (MIMO) is expected to be one of the enabling technologies for fifth-generation cellular networks. One of the major challenges in massive MIMO systems is the accurate joint estimation of the channel and noise variance, which significantly affects the performance of wireless communications in practical scenarios. In this paper, we first derive a novelmaximum likelihood estimator for the noise variance at the receiver of massive MIMO systems considering practical impairments such as pilot contamination. Then, this estimate is used to compute the minimum mean square error estimate of the channel. In order to measure the performance of the proposed noise variance estimator, we derive the corresponding Cramer-Rao lower bound (CRLB). Simulation results show that the estimator is efficient in certain scenarios, outperforming existing approaches in the literature. Furthermore, we develop the estimator and the CRLB for equal and different noise variance at the receive antennas. Although the proposed estimator is valid for all antenna array sizes, its use is particularly effective for massive MIMO systems.
引用
收藏
页码:2982 / 2996
页数:15
相关论文
共 37 条
[1]  
Afroz F., 2015, Int. J. Wireless Mobile Netw., V7, P113
[2]  
Ammari M. L., 2014, P IEEE VEH TECHN C V, P1
[3]   Feasible Generalized Least Squares Estimation of Channel and Noise Covariance Matrices for MIMO Systems [J].
Ammari, Mohamed Lassaad ;
Fortier, Paul ;
El Khaled, Mohamad .
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2016, 39 (01) :42-50
[4]  
[Anonymous], 2016, Ericsson Mobility Report
[5]  
Bai TY, 2015, IEEE INT WORK SIGN P, P620, DOI 10.1109/SPAWC.2015.7227112
[6]   Space-time communication for OFDM with implicit channel feedback [J].
Barriac, G ;
Madhow, U .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3111-3129
[7]  
Benjebbour A, 2003, ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, P1023
[8]   Five Disruptive Technology Directions for 5G [J].
Boccardi, Federico ;
Heath, Robert W., Jr. ;
Lozano, Angel ;
Marzetta, Thomas L. ;
Popovski, Petar .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :74-80
[9]   Novel noise variance and SNR estimation algorithm for wireless MIMO OFDM systems [J].
Boumard, S .
GLOBECOM'03: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-7, 2003, :1330-1334
[10]  
Classon B., 2011, Link Adaptation Channel Coding, P215, DOI [10.1002/9780470978504.ch10, DOI 10.1002/9780470978504.CH10]